
Jan Marker | Senior Software Engineer, KDAB

KDAB’s Software
Development Best Practices

CI and CD

2 KDAB — Trusted Software Excellence

The software engineering community has learned hard lessons over

time about the best way to build software. Following tried-and-true

practices provides a huge number of benefits: increased software

resilience, faster release schedules, higher product quality, more

effective teamwork, and happier developers.

In a modern software development process, continuous integration

(CI) and continuous deployment (CD) plays a vital role. However,

implementing CI/CD within an organization can be challenging. Due to

the need for customization to align with specific work products and

workflows, it often requires some trial and error. To help you minimize

needless dead-ends, we’ll share some of our hard-won advice on using

and configuring CI/CD systems, as well as explain why you should be

using CI/CD if you’re not already.

1. Basics

	 1.1. Why CI/CD?

Code reviews are already an integral part of your process, and their

significant contribution to improving code quality is widely recognized.

Now, imagine the CI process as an additional, automated reviewer

for your code. Every time a change is pushed into the repository, your

CI “reviewer” ensures that the software successfully builds across all

platforms and passes all tests before moving forward. In addition to

catching compiler warnings and validating unit tests, the CI build can

also include static analysis tools (like Clang or Clazy for C++) and other

linters and sanitizers to identify other potential issues. This automated

computer-blessed code review helps maintain quality and stability

across all platforms. This alone justifies the time investment to set up

CI.

Another aspect is code consistency. If your developers’ IDE settings

are individually configured to format line breaks, bracket/brace

placement, spacing, comments, and identifiers, it’s easy to introduce

KDAB — Trusted Software Excellence 3

multiple competitive styles into a large code base. Such competing

styles do not promote code readability or consistency. The CI build

can use tools to verify that consistent formatting styles are applied

across all source files. This is especially helpful when working with large

and distributed teams. Additionally, these tools can check for spelling

errors in variable names and comments. By performing these checks

within the CI system, all contributors will automatically adhere to the

same standards, eliminating the need for time-consuming debates on

formatting issues during human reviews.

Finally, while developers should run unit tests themselves, for

expediency, they often focus on the tests immediately impacted by

their changes. So, CI does two great things for the developer. Firstly,

because the CI system runs all tests and not just a restricted set, it

can uncover unforeseen issues that the developer may have missed.

Secondly, it saves valuable developer time. Developers can confidently

limit themselves to a small set of local tests to ensure the code passes

an initial sanity check. Because the CI testing is done asynchronously

on dedicated CI systems, they know comprehensive testing will still be

done.

	 1.2. What do you need to make it work?

At a minimum, you need a shared repository that all developers are

working on. In a later section, we’ll cover how and why you’ll want

to implement your CI in an on-prem or cloud solution, but if you’re

implementing an on-prem solution, you need a dedicated CI server

and, depending on the size and complexity of your project, several CI

worker machines.

Whether you need a dedicated CI person or not depends on the CI

system that you choose, which we’ll discuss later. However, it’s best

if you have a dedicated CI person. If that’s not possible, you can

manage with two or three people that have CI as their part-time role to

start, although clearly their work will be often interrupted. Essentially,

4 KDAB — Trusted Software Excellence

some systems distribute CI knowledge and responsibility among all

the engineering staff, while others concentrate it in a dedicated CI

team.

Depending on which CI tool chain you use, it can be pretty

straightforward to set up – in simple cases, within a day or two. For

example, GitHub Actions (and similar cloud-based services) offer a

pre-paid service that is already configured and working. You need to

understand how to customize it for your build, but you don’t need to

acquire and set up build machines.

On the other hand, a solution like Jenkins or Buildbot will require

setting up servers, installing software, setting up worker machines,

and keeping the OS updated, and customizing it for your project.

Since user-centric OSes like Windows or Mac are not really intended

to be run as servers, you’ll probably need to include automation

systems like Chef or Ansible along with special setups for unattended

operation so that reboot logins or application crashes don’t halt the

CI process. The benefit, however, is that Jenkins or Buildbot can more

easily give you full control of your CI environment, which is often

preferable and may be necessary.

To determine the right approach for you, read through the rest of

this document and focus on the sections about cloud versus on-

prem and the individual tools.

	 1.2. Is CI of value without unit tests?

Yes! Especially at the beginning of a project, you really don’t need a

lot of tests for CI to be effective. As mentioned before, you still get

a lot of value from compiling on other platforms, performing static

analysis, and running format checkers. But you can easily start with

a small number of effective tests that validate important items. They

won’t be too hard to write, and they’ll probably fail more often than

you expect. Start your test framework simple and accumulate new

tests as you find and fix bugs.

KDAB — Trusted Software Excellence 5

2. Comon methodologies

	 2.1. Splitting your CI

A well-working CI system becomes an automatic part of the

development workflow, greatly aiding overall quality. However,

one of the most important attributes of your CI system is speed.

The CI builds need to be fast – once a commit is pushed to the

repository, developers should get feedback within 10 minutes, not

10 hours. The longer the feedback loop, the less that developers

will rely on it and the more they’ll be tempted to ignore it. But

big, complex projects can be very challenging to build quickly,

no matter how many Gigahertz you throw at it. That’s why

we recommend that you have at least two distinct CI build

configurations, one for quick per-commit builds and one for

thorough nightly builds.

The quick builds will be run throughout the day as developers

commit their changes. They should take advantage of pre-

built dependencies and cache as much as possible. The static

checkers and sanitizers that do get run in a quick build should

be with settings that are the most effective, not necessarily

most comprehensive. This will give developers feedback on the

validity of their changes while requiring the least amount of work,

delivering results quickly.

The nightly builds should do everything from scratch. Start with

just source and empty binary directories. Turn on all the static

checks that make sense for your code. Include all the necessary

installers and packagers. If all your developers are in the same

time zone, the nightly build can use the same build machines as

the quick build, although with round-the-clock development, you

might need a dedicated machine that does your thorough once-a-

day build.

In cases where your development team needs to periodically

6 KDAB — Trusted Software Excellence

share updates outside the organization, such as when customers

are involved in the testing cycle, you may need one more build

configuration: a packaging build. This build is more complete

than quick builds as it’s done from scratch, but because it can

rely on the nightly build to do the full gamut of checks, it can be

a bit lighter weight. This build can be run several times a day as

developers interact with the off-site testing team. Alternatively, if

the packaging step is sufficiently fast, it can be incorporated into

the quick builds.

	 2.2 .	 Overriding CI gating

Developer tools (GitHub, Gerrit, Bitbucket, etc) in a CI workflow

usually have an option for a CI-gated check-in. This step requires

that the CI system has validated any developer changes before

commits are merged back into the main branch. It ensures that

every commit properly passes compiler and unit tests.

However, it’s recommended to avoid making CI-gated check-

ins optional in the development workflow. If developers get in the

habit of skipping the CI build or bypassing the CI results, the value

provided by CI can rapidly diminish. Because if your CI system isn’t

working right, developers may override it.

For example, if the build takes too long because the CI system

experiences a network problem, developers may choose to

bypass the CI check. Since it’s easier to bypass checks instead of

addressing underlying CI build issues, the team may eventually

stop using CI altogether.

This emphasizes that the CI system must be reliable, quick, and

accurate. If you intend to enforce CI validation for each commit,

it is essential to ensure that the CI system receives continuous

maintenance and consistently works properly.

KDAB — Trusted Software Excellence 7

	 2.3 .	 CI for non-web applications

. While CI techniques have broad applicability, the implementation

of continuous deployment (CD) differs depending on the type of

development. It’s worth noting that the quality of CI/CD tooling

often excels in the realm of web development. The process for

CD in web development is relatively simple since there is a single

platform and a controlled number of distribution endpoints. Once

a source code commit is deemed valid and verified, changes can

be immediately published.

CD for embedded and desktop development has a couple of

extra steps. It must first create a downloadable version of the

application – in other words, an installer and/or over-the-air

packages for all supported platforms. Then, it needs to publish

a metadata file that points to those package file URLs along with

their versions. Finally, either manually initiated by the user or

kicked off by an automated process, the target machines will

consult that publicly accessible metadata file to find the installer

or update, check if it’s newer than the current software, and

download and install it.

The big difference between these models for the CI/CD system

is that in general with desktop and embedded system

development, CD should not be done off the main branch.

(Note that there might be exceptions if the target is a single very

stable hardware platform, but planning ahead doesn’t hurt.)

There are a few possible branches you will need:

	• Normal work is done on the main development branch, and

this is the branch that the CI system runs off of.

	• The user-facing CD process needs more control, so it runs on

a separate release branch that’s used for generating testable

packages. Once a release manager says the software is ready to go,

it then gets packaged as an official versioned release off this branch.

8 KDAB — Trusted Software Excellence

	 2.4. Cloud versus on-prem CI

Should you use a cloud-based CI system or build your own on-

premises system?

The simplicity of cloud-based CI makes it highly attractive.

Someone else has done all the work – you don’t need to acquire

hardware through your purchasing department, work with your

IT organization, order huge hard disks or beefy processors, or

install and configure all the many bits of software. You can start

working right away with a cloud CI system.

The same is true if you think your CI needs are going to change

quickly, scaling either up or down. It’s far easier to grow or shrink

your cloud assets as needed than to automatically configure new

VMs or to acquire new machines for your CI server room. If your
CI needs to ramp up quickly or scale dynamically then go

with a cloud-based system.

Additionally, if you’re already using a cloud hosting platform

like GitHub or GitLab, incorporating a related cloud-based CI

solution like GitHub Actions becomes significantly easier.

While cloud can be a very easy way to get into CI, there are two

big factors to consider. The first is cost. You’ll be racking up cloud

processing and storage fees when your CI system runs, and it will

be generating several cross-platform builds many times per day.

That can turn out to be a rather expensive investment with your

cloud provider and, in fact, cost is probably the biggest reason

to go on-prem.

Another reason might be data privacy. Privacy and security

regulations that constrain code and data storage by physical

location, security methodology, or data handling rules can make

it difficult to use the cloud. You’ll probably need to go on-prem if

you need to follow strict data privacy or security rules either

as a result of your region (for example, complying to GDPR in

KDAB — Trusted Software Excellence 9

Europe), or industry (adhering to military or medical data handling

requirements), or your own company’s IT and cybersecurity

policies.

3. Exploring solutions

At the current point in time, there are three CI solutions that are

taking up most of the discourse. There are many others in use, but

a team setting up a new CI/CD system will likely encounter one of

these three main options. Their main distinctions are whether CI

work is concentrated in a dedicated team or spread throughout all

developers in the project, and whether the CI system is based in

the cloud or not.

	 3.1. Buildbot

Buildbot is an on-prem solution that maintains all CI information

in a single place. With it, you can specify what projects to build and

how to build them. Lots of critical projects use Buildbot such as

Python, Webkit, LLVM, Mecurial, Blender, GDB, Gentoo Linux, and

Yocto.

Buildbot needs a system administrator to keep CI software up to

date. It assumes the use of VMs for both the build master and

the workers. It’s necessary to provide your own hardware and set

up this environment accordingly. With Buildbot, it’s possible to

construct either a pet or cattle environment for the workers, and it

supports both load balancing across workers and pinning projects

to specific workers.

Buildbot’s design offers pros and cons.

Pros:

	• ·	Single point: Maintainers can quickly make changes that

impact all projects, like adding a new static analysis tool or

validating against a new set of checks.

10 KDAB — Trusted Software Excellence

	• ·	Scaleable: Scaling with Buildbot is easier for multiple projects

that use the same tool chain.

	• ·	Flexible: The system is very configurable and can be made

to align with your team’s preferred workflow. It provides

exceptional flexibility since it uses Python code, but it’s also

simple to set up for easy use cases.

Cons:

	• ·	Maintainer: Buildbot lacks a user-friendly web portal for easily

controlling its settings. Instead, it’s necessary to modify code

and configuration files, which means you pretty much need a

dedicated Buildbot person or team to effectively maintain the

system.

	• ·	Complexity: With flexibility comes with increased complexity.

As the number of projects grows, the configuration complexity

can escalate quickly, making the set up technically demanding.

	• ·	Non-SaaS-able: Despite its capability to create distinct servers,

Buildbot lacks support for crucial concepts needed to service

multiple external clients, like separating projects and users into

distinct access groups.

Overall, Buildbot is the better tool when dealing with many

similar projects (in terms of language, framework, and

dependencies) and a need to scale easily. It’s is also better

for companies who need to highly customize their CI workflow.

Buildbot is a good choice if you have many projects that
are consistent in workflow but relatively unique in their

dependencies. However in this case, Jenkins is also a viable

alternative, which we’ll discuss next.

	 3.2. Jenkins

Jenkins is another on-prem solution. Unlike Buildbot’s centralized

KDAB — Trusted Software Excellence 11

approach to CI configuration, Jenkins offers the flexibility to either

centralize or distribute CI information throughout the source

repository as a set of configuration files that drive the build.

Jenkins is also widely used with companies such as FaceBook,

Netflix, Udemy, and Twitch.

Jenkins is similar to Buildbot in several ways. Like Buildbot, Jenkins

needs an administrator to manage the system (for all but the

simplest use cases). It uses VMs for both the build master and

the workers, and you are responsible for providing the necessary

hardware and configuring the environment, similar to the efforts

involved in setting up Buildbot. Additionally, it supports both pet

and cattle workers and can load balance tasks across workers and

pin tasks to specific workers.

Differences between the two environments start entering into the

picture when considering flexibility and ease of use.

Pros:

	• Non-centralized: While you can use a centralized CI

configuration, you don’t need to. If you use a non-centralized

structure, Jenkins lets the CI configuration be easily changed on

a per-project basis by developers. ·

	• CI configuration within a project is also easier if you have

many projects with a diverse set of tools, languages, libraries,

and platforms.

	• 	Easy on-prem: Jenkins tries to provide a plug-and-play setup

and uses a flexible plug-in architecture, making it easy to use

for more common use cases. Its simplicity is particularly evident

when used by someone with deep Jenkins knowledge. Because

it uses a clean web interface to administer projects and build

configs, it may not even require a dedicated person for simple

use cases.

12 KDAB — Trusted Software Excellence

	• SaaS-able: Jenkins offers robust features related to user

management, security, and visibility, making it possible to

create a CI/CD environment that can support projects involving

multiple clients or customers.

Cons:

	• Change: Because the CI configuration is (often) scattered

throughout the source tree, it can be harder to implement

global changes consistently.

	• ·	Scale: Similarly, Jenkins can be more difficult to scale when

adding or changing multiple projects.

	• ·	Adaptability: Not every configuration is provided out of the

box, and plug-ins don’t cover all use cases. If what you need is

outside existing workflows, the customization or modification

of plug-ins becomes necessary. This involves using Groovy, a

scripting language specific to Jenkins. While Groovy is flexible,

it does not offer the same power as the Python code used in

Buildbot.

Since it’s easy to understand, set up, and use, Jenkins is the

best tool if you’re getting started in CI and need an on-prem

solution. Jenkins is a good choice if you have many projects

that are consistent in workflow but relatively unique in their

dependencies. Because Jenkins is more “opinionated” as to how

it works, it’s not as easily used by teams with a lot of projects that

have distinct workflow requirements. While you might be able to

get away without a dedicated CI person for a Jenkins setup, it is

similar to Buildbot in that it would still greatly benefit from having

a dedicated person (or team).

	 3.3. GitHub Actions

GitHub Actions (GHA) is a cloud-based CI solution that is an option

KDAB — Trusted Software Excellence 13

for GitHub users and offered by GitHub as a freemium option

(free for open source, paid for private repos). Like Jenkins, it uses

project-contained configuration files.

Pros:

	• Ease of use. GHA is straightforward to use and very friendly for

the uninitiated with lots of pre-existing prepared environments

and scripts to handle common problems, making it the

simplest to get started.

	• 	Public projects. GHA makes perfect sense and is a great fit for

anyone who’s contributing to open-source projects and needs

a CI system.

	• Maintenance. You don’t need a dedicated CI person, since

maintenance work is being handled via the cloud service.

Cons:

	• Platform. GHA is tied to the GitHub ecosystem, so you

can’t use GHA if you need an on-prem solution, you’d prefer

another system besides GitHub, or you need flexibility in your

repository platform.

	• Cost. Whereas Jenkins and Buildbot are open-source and freely

available, GHA uses a model where you have to pay to use it

with private repositories.

GHA offers the simplest way to get started in CI. If you’re

working on a project that has external code contributions,

you may want to consider using GHA since it works great for

open-source projects. (That’s also because CI systems can

run user-submitted code as part of the build process; you

want any potentially unsafe contributions contained in a server

environment!) However, GHA has some limitations that make it

harder for private companies to use. And notably, while we’ve only

14 KDAB — Trusted Software Excellence

discussed GHA for GitHub, there are similar solutions with similar

pros and cons for many other popular repository platforms, such

as GitLab CI/CD for GitLab or Bitbucket Pipelines for Bitbucket.

or other optional features, requiring a plug-in based architecture.

But to make plug-ins effective, you have to ensure they have

access to all the bits that make them work properly. That often

requires continually expanding the scope of the plug-in interface.

In turn, this drives a desire to make nearly everything in the

program a plug-in since that approach ensures the plug-in APIs

are all being properly exercised and are complete. However, if

you’ve ever built an application with plug-ins, you know that they

introduce a number of problems into development. Plug-ins can

prevent cross-application compiler optimizations, and because

plug-ins run as modules loaded by the application, they can be

very difficult to test and debug.

If you need to incorporate plug-ins, make sure that you design

plug-ins to add features that are truly optional, and bring all

other functionality into the main development branch. This helps

you keep the plug-in scope from taking over the entire application

and turning development into an awkward and slow process.

	 3.4. CI Helpers

There are a couple of noteworthy tools for desktop and

embedded development that, although not explicitly designed as

CI solutions, significantly contribute to streamlining the CI process.

CMake Presets enhances the functionality of the CMake build tool

by enabling the creation of multiple different build configurations.

CMake defines the structure of a build with environment variables,

dependency locations setting which files or modules need to be

built. With CMake Presets, you can organize different parts of the

build process into different preset configurations. This allows you

to create a build configuration specific to CI, and use it alongside

KDAB — Trusted Software Excellence 15

the standard developer build process. This feature is especially

useful for larger projects, where much of the environment is

shared between multiple types of build.

pre-commit is a framework for managing pre-commit hooks in Git

that allowing certain processes to run before files are submitted

for code review. This can be used to set up static code checkers

and code formatting tools, running those features on the

developer’s computer for a speedy turnaround. This approach can

take a lot of load off the CI system.

What is KDAB’s Software Development Best Practice series?
This series of whitepapers captures some of the hard-won experience that our senior engineering staff has
developed over many years and projects. Offered up as a grab bag of techniques and approaches, we believe that
these tips have helped us improve the overall development experience and quality of the resulting software. We
hope they can offer the same benefits to you.

View all three parts of this whitepaper series online at: www.kdab.com/publications/bestpractices/

16 KDAB — Trusted Software Excellence

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for

architecture, development and design of Qt, C++ and OpenGL

applications across desktop, embedded and mobile platforms.

KDAB is the biggest independent contributor to Qt and is the

world’s first ISO 9001 certified Qt consulting and development

company. Our experts build run-times, mix native and web

technologies, solve hardware stack performance issues and

porting problems for hundreds of customers, many among

the Fortune 500. KDAB’s tools and extensive experience in

creating, debugging, profiling and porting complex applications

help developers worldwide to deliver successful projects.

KDAB’s trainers, all full-time developers, provide market leading,

hands-on, training for Qt, OpenGL and modern C++ in multiple

languages.

www.kdab.com

© 2023 the KDAB Group. KDAB is a registered trademark of the

KDAB Group. All other trademarks belong to their respective

owners.

