
Andreas Holzammer | Senior Software Engineer, KDAB
Leon Matthes | Software Engineer, KDAB
Lieven Hey | Software Engineer, KDAB
Eystein Stenberg | Chief Technology Officer, Mender

KDAB’s Software
Development Best Practices

Software Updates Outside the App
Store

2 KDAB — Trusted Software Excellence

KDAB — Trusted Software Excellence 3

When building an application distributed through the Google or
Apple app stores, much of the heavy lifting in delivering updates is
handled for you. However, there are many circumstances where
these consumer app stores don’t apply: embedded devices, industrial
desktop applications, and dedicated-use tablets, among others. If
you’re building one of these systems, your software will necessarily live
outside of these app stores. So how do you design and build a system
that can effectively deliver and update your software?

The challenge isn’t just updating the application itself. Often, the
entire execution environment needs to be replaced, including the
operating system, drivers, firmware, libraries, FPGA programming files,
DSP firmware, system configuration files, and any other application-
dependent components. The update procedure must be designed
very carefully to keep customer downtime to a minimum and avoid
situations that could disable the system.

To learn what engineering teams should consider when planning their
update strategy, we’ve consulted with our internal experts as well as
our partner Mender that specializes in over-the-air (OTA) updates.
Each of us has contributed best practices and insights gleaned from
many customer engagements and difficult engineering challenges.
This document primarily focuses on embedded devices because they
often require the most work to address. However, many of these
considerations is also relevant to other software systems that operate
outside the main app stores.

1. Update Content

	 1.1. Packages

One of the first decisions when designing an application update
scheme is determining the scope of the updates. A tempting choice
might be package-style updates. In other words, you could set up your

system to periodically run an apt or yum script to pull down the most

recent packages. This method is attractive since the technology is

pre-existing, reliable, free, and seems to do what you need: updating

4 KDAB — Trusted Software Excellence

binaries and configuration data with the most recently tested packages

for in-field systems.

However, some significant drawbacks come with using package

managers for updates, which is why we don’t recommend using them.

	• Fragmented updates. Package managers, by design, update

portions of the system, rather than the entire system at once. While

this might save on download time, this approach makes it extremely

difficult to ensure consistency across in-field devices. Given that

there’s no certainty about which devices update which packages and

when, it introduces unpredictability. For instance, if you’ve deployed

a dozen packages on the system, the potential combinations of the

system image can grow exponentially. Consequently, it is nearly

impossible to test all possible variants of the system. Replicating

issues that match a user’s specific configuration also becomes

unreliable.

	• Limited reach. While package managers work well at updating

software that’s deployed within a package, they cannot manage the

many parts of a running image that are outside – board support

package, operating systems, and device drivers. You could attempt

to wrap these parts with a custom-built package, but even so,

updating certain files with a package manager will remain unfeasible.

	• Challenging rollback. What happens if an update causes problems

and the package must be rolled back? While package managers

can downgrade by asking for a specific version of the package,

interwoven package dependencies make this a relatively delicate

operation that cannot be thoroughly tested. Considering that

rollbacks are rare and emergency driven, they must be dead-simple

and reliable. Relying on a package manager to rollback is risky and

testing it is impractical.

	• Lack of segmentation. Updates through package managers will

refresh every single device. However, in practice, there’s often a

KDAB — Trusted Software Excellence 5

need to segment your updates based on different geographies,

user categories, product models, beta testers, etc. The one-size-

fits-all approach of package managers doesn’t accommodate this

granularity.

	 1.2. Containers

Containers offer a broader scope for system updates compared

to packages, which can increase their reliability and testability for

software updates. However, just like packages, containers suffer from

similar issues such as multiplying permutations of the system and an

inability to update the entire system image.

However, there are circumstances where containers might be an

appropriate solution. For instance, if you’re using a single container

on a stable OS installation that seldom changes, a container-based

update could replace all the components that need to be regularly

updated. Cxontainers might also be the best alternative when

you don’t have full control over the system, like on an application-

dedicated tablet.

However, a container still can’t update the full software stack,

and because of this inability to update the OS or other low-level

components – despite being great developer tools – containers aren’t

well suited to be the sole component of a robust system update

strategy.

	 1.3. Firmware Images

Our preferred way for delivering updates involves sending a complete

bootable firmware image to the device. This is especially the case for

embedded systems and other devices where you have full control.

A complete image update lets you test the entire system without

worrying about the many permutations of the running software

components. Since the whole firmware image is replaceable, this

method also offers access to low-level components that other

6 KDAB — Trusted Software Excellence

methods don’t, such as patches to the operating system or

updating device drivers. Implementing complete firmware image

updates also makes it straightforward to tag the full set of files in

your version control system associated with a particular build.

Since you must always have a bootable image even when a new

update fails or is in progress, you typically need two bootable

partitions. Once an update is downloaded and ready-to-go, a flag

is toggled to indicate the system needs to boot into the freshly

downloaded partition on next reboot. This is called an A/B system,

since the two bootable partitions are usually labeled “A” and “B”.

Using an A/B strategy allows the system to revert to a known

working state in case of a failure (we’ll discuss how in section 2.1),

and it’s what we recommend.

	 1.4. Hybrid system

If you have an A/B update system to address the entire firmware,

you can also consider adding the flexibility of container-based

updates on top. Container update payloads are smaller, saving

transmission cost, time, and bandwidth. Furthermore, new

applications can be pushed out with less disruption to the user

since a full reboot isn’t required to activate the new load. A hybrid

update scheme lets you roll out more agile application updates

every couple of weeks while reserving full system updates to

once a quarter or twice a year. These full updates refresh the

lower-level components and bring all in-field systems to the

same baseline version. The disadvantage to a hybrid approach

is the necessity to develop (and/or acquire) and support two

independent update mechanisms.

	 1.5. Compression vs Deltas

To minimize the amount of time and bandwidth required to

download update payloads, it’s recommended to use some type

of compression scheme on your update files. Employing methods

KDAB — Trusted Software Excellence 7

such as compress, gzip, or bzip2 can reduce file size by at least

20-30%, depending upon how much redundancy is in your image.

It might also be beneficial to try some trials using your specific

image files to see which algorithms achieve the best compression

in both average size reduction as well as decompression speed.

A delta algorithm calculates the differences between the last

image and the update, creating significantly smaller files than

standard file compression does. Although the payload size

differs depending on the size and number of changes between

the old and new image, Mender estimates that a delta file can

typically achieve a compression ratio of 85 - 90%. Even though

delta technology isn’t widely available in open-source platforms,

the potential savings in bandwidth, update download time, and

application update speed may make it an avenue worth exploring.

2. File Systems

	 2.1. A/B Boot Partitions

As discussed, an A/B boot partition is a straightforward and

reliable way to structure full system updates. In the A/B boot

setup, the system has two identically sized boot partitions.

The bootloader has a flag outside of these partitions (in either

dedicated persistent storage or a mutable data partition)

to indicate which partition to boot from. New updates are

downloaded into the inactive partition. Once an image is

successfully downloaded and validated, the boot flag is toggled

to indicate that the newly updated image should be used for

subsequent reboots. This approach offers several benefits:

	• New updates can be downloaded and written in the

background while the system is fully operational.

	• The downloaded image can be validated before the system

attempts to use it.

8 KDAB — Trusted Software Excellence

	• There should always be enough space to store new update

payloads.

	• If any complications arise with an aborted, incomplete, or

corrupt image download, the system will revert to rebooting

from the verified stable image.

The biggest limitation is that each partition contains a complete

image of the executable code, so this configuration requires up

to twice as much flash. However, this isn’t a significant drawback;

to deliver a robust and reliable update procedure, an equivalent

amount of extra flash is essential regardless of how you structure

your system.

	 2.2. Data Location

When using an A/B dual boot configuration, the best location

for the data is a dedicated partition shared between the A and

B partitions. This partition should have all data that’s modified at

run-time, including items like user configurations, accounts and

passwords, databases, and logs. Leave out static data that your

application uses, like default configurations, initial databases, help

systems, multimedia files, neural network models, and so on. All

Background Writes
Downloading new update images in the background minimizes user interruption. While this works great for
phones and laptops, this is something worth double-checking in an embedded system. It’s advisable to carefully
test the device’s ability to receive updates, especially while it’s heavily loaded with other tasks.

This is because the default scheduler for most Linux variants is “fair”, which means it can inadvertently interrupt
critical tasks, especially when network and/or disk I/O bandwidth is consumed by heavy update downloads. To
make the whole system resilient under fluctuating loads, it’s vital to consider thread priorities and algorithms on
a system-wide basis. Linux offers tools like SCHED_FIFO, SCHED_RR, and SCHED_DEADLINE for this. Real-time
operating systems (such as QNX, VxWorks, or FreeRTOS) can set critical tasks to a higher priority to avoid this type
of background thread interruption.

KDAB — Trusted Software Excellence 9

your read-only data should reside in the executable A/B partitions.

Do you need two data partitions – one used by the A partition

and one used by the B partition? Not really, and it doesn’t offer

any benefit. Two partitions would require duplicating data from

the live configuration to the new one once you’ve successfully

downloaded a new image. Otherwise, any user changes would

be lost. Maintaining identical content in two places just takes up

space and adds time to the update process.

	 2.3. Data Structures

No matter where you put your data, it’s imperative to maintain

backward and forward compatibility in your data structures,

including database schemas, configuration files, data formats,

and data filenames. It is impossible to avoid all data format

changes when modifying code to fix bugs or adding new features,

but make sure that any data changes are compatible between

software versions. To start addressing potential issues:

Create classes that wrap data files so that software is insulated

from the data’s on-disk representation.

When reading JSON or XML files, don’t error out when

encountering unrecognized tags, just ignore them. This gives you

the flexibility to add new data types and fields in the future that

are still compatible with older code.

The same applies to proprietary binary files. Include features like

version numbers, field type identifiers, and size fields that allow

data chunks to be skipped over if they aren’t understood by the

code.

Add code that can recognize and convert older data structures to

a newer format after they have been read.

Changing data formats and structures significantly complicates

testing, so in many cases it’s probably better to defer outright

10 KDAB — Trusted Software Excellence

changes to data formats.

	 2.4. Switching the Bootable Partition

Only flip the bootable partition from A to B or vice versa once

you’ve fully validated the downloaded image. Your download

images should incorporate a verifiable hash or checksum to

ensure the content was downloaded correctly. Flipping the

bootable partition from A to B or vice versa must be atomic (like

a single flag in a dedicated flash sector) so that if the process is

interrupted, the system will still boot into the old partition.

What if something goes wrong in the new partition? Our preferred

solution is to allow the boot logic three attempts to successfully

reboot; if the new image can’t be booted in any of those attempts,

then revert back to the original partition. One way to do this

is to use a hardware watchdog. The bootloader programs the

watchdog length for just beyond the maximum duration of a

successful boot under normal circumstances. The application

turns the watchdog off once it starts executing. This way boot

failures (detected by the application failing to reset the watchdog)

can be automatically caught by the hardware, forcing a system

reset.

	 2.5. Rescue Partitions

Sometimes you may need to clear the device to a “factory reset”

state. This acts as a “safe boot” option, allowing the user to restart

a faulty device regardless of corruption or faults in the update

partitions. This can be done with a rescue partition, which provides

a static bootable image untouched by updates. Booting into the

rescue partition wipes the device data and downloads the latest

update.

While this functionality is a bit out of scope from most OTA

implementations, it’s still an important part of the whole update

KDAB — Trusted Software Excellence 11

lifecycle. Whether or not you need a rescue partition depends on

various factors:

	• Availability of reserve flash

	• A user-initiated way to invoke it

	• Potential resale of the device

	• Presence of sensitive user data

	• Support reasons for adding this capability

Booting into a rescue partition can prevent the device from

bricking if something goes severely wrong with the bootable

images. This is often a last-ditch effort since it wipes off any user

data. This also makes it an effective way to remove all private

data off the device for resale or disposal. Support staff can also

leverage a factory reset option if the device is malfunctioning in a

way that can’t be corrected.

For user-initiated factory resets, a dedicated, recessed switch

might be required – something you want to determine in the

initial stages of hardware and enclosure design.

3. Hardware

	 3.1. Write cycles and wear-leveling

Solid-state drives use NAND Flash, which has a limited number of

program-erase cycles per block before it can start to fail. Under

normal circumstances this isn’t a cause for concern as the flash

hardware controller takes care of wear leveling, automatically

shifting blocks into new locations to evenly distribute wear and

proactively prevent issues.

However, this results in a gradual loss of free space as blocks

become unusable. This is something to consider if your

application is very actively writing to disk. Although most file

12 KDAB — Trusted Software Excellence

and database operations are buffered in memory by default,

continuous flushing of data to disk – like when continually logging

or capturing data – can accelerate the degradation process.

Logging is an instance where this happens frequently (since you

want the on-disk content to reflect the last thing the application

did before it crashes), so many loggers will flush after every new

log. Consider disabling this “always flush” behavior in release

builds.

For applications with constant disk writes, consider reserving

plenty of spare provisioning room in an untouched partition. This

ensures the flash controller has an exclusive store of blocks for

wear leveling. Another alternative, albeit more costly, is to place

highly active files on a separate disk backed by a NOR flash chip,

which can support a much higher number of program-erase

cycles.

	 3.2. SD cards

While it might work for DIY applications using a Raspberry Pi, we

don’t recommend placing your boot image on an SD card due to

potential complications:

	• Cards may not be inserted fully.

	• Vibrations may loosen the card and cause intermittent

connections.

	• Users can use low-speed or insufficiently sized cards.

	• Hackers can easily remove the card for reverse-engineering.

To build the most robust device, we recommend using on-board

flash or dedicated flash chips.

	 3.3. Manufacturing

When your device is being built, your manufacturer must have a

KDAB — Trusted Software Excellence 13

starting image to flash into your products. They will also do basic

provisioning, such as generating unique keys for each device. Our

recommendation is to develop an automated process for regular

updates of images to your hardware manufacturer. Try to work

this out ahead of time, not after the production line is already

rolling. Additionally, assume that every device will need an OTA

update immediately “out of the box”. This lets you load the latest

software version before it starts being used and reduces the

number of software variants in the field.

4. Delivery

	 4.1.Network

While it’s common to assume devices have constant connectivity,

this is not always the case. Even when your devices do have

connectivity, there are a couple considerations that can impact

your update strategy:

	• Sporadic connection. Devices that only connect while docked

or have unreliable coverage.

	• Costly connection. Devices using expensive cellular, roaming,

or satellite technology.

Device-Unique Keys
Using one key for all devices simplifies the system build since the key will be part of the device firmware image.
However, this approach is also the most prone to serious repercussions if the key gets compromised. Placing a
private key in the image poses risks as hackers can reverse engineer the image to extract it. Additionally, obtaining
factory-flashed chips from a silicon vendor becomes challenging because blacklisting the key invalidates all
devices, not just one.

To use device-unique keys, allocate persistent storage on the device for the manufacturer to load with a unique
private key. They should concurrently send the public part of the key to your cloud-based certificate management
service. Importantly, while the device’s private key should be read-only under most circumstances, it must be
alterable for key replacement – so don’t place it in write-once memory.

14 KDAB — Trusted Software Excellence

	• Limited bandwidth. Devices with only (or often) low-

bandwidth connections.

In these cases, you can’t just assume that firmware images

are downloadable at any moment. Managing them requires

minimizing update payloads and implementing a very robust retry

strategy that should be interruptible and able to pick up exactly

where it left off.

There are two other possible strategies to handle these low or

sporadic connection situations, but both have drawbacks:

	• Update cadence. Opting for a less frequent update schedule

can be one solution. For more details, see section 5.2 on

Security Advisories.

	• User initiated updates. Another approach is to let users

initiate or control updates. However, users may consistently

skip pending updates, thereby missing out on crucial security

updates or bug fixes. To avoid this, flag updates as either

optional or mandatory and only allow users to skip optional

updates. Another alternative is to allow users to skip optional

updates but be restricted after a certain number of skips or

days before updates become mandatory.

	 4.2. Hosting

Should you host your own OTA server? Using a SaaS solution

will probably provide you and your customers with a better

experience than a self-hosted solution. Generally, we think it’s

better to rely on someone who does this for a living. However,

industry requirements or privacy regulations may make hosting

your own on-prem OTA server necessary. If that’s the case, make

sure it runs on a dedicated system and assign a maintenance

team.

KDAB — Trusted Software Excellence 15

	 4.3. Certificates

SSL certificates allow you to ensure that your devices are being

updated with genuine content. That’s why we recommend using

them as part of the protocol connecting to the update server

or within the update payloads. They provide a mechanism that

authenticates your company as the valid source of the update

binaries.

Certificates can be created with different cryptographic

algorithms. Since continual advancements in computing power

shorten the investment necessary by hackers to decrypt keys, it

is prudent to use algorithms with the longest bit length keys (or

those of equivalent strength). This maximizes the dependable

lifespan of the certificate before needing to transition to an even

more secure cryptographical algorithm and update all devices and

servers.

Certificates still have a specified validity date though, and outside

that time range they won’t work. Plan to update all user devices as

well as your update server with plenty of advance notice.

What if a certificate you’re relying on expires anyway? The

implications vary depending on whether the expired certificate

is on the server or device side. If the server’s certificate

expires, devices connecting to the server will reject the expired

authorization and fail. However, the resolution is simple – just

update the certificate on the server. Eventually when the devices

retry the connection, updates will proceed normally.

If the device certificates expire, you may have to have the user

manually intervene. This situation is similar to circumstances

where certificates become invalidated for other reasons – see

the sidebar, When Certificates Go Bad. Such scenarios, while

mere inconveniences for desktop systems, can be significantly

challenging for embedded devices. If your update mechanism

16 KDAB — Trusted Software Excellence

relies on properly working certificates, then certificate problems

will disrupt deployed devices from getting any further updates.

As a precaution, have an emergency update method that doesn’t

require a valid certificate on the device, like a USB stick update.

	 4.4. Certificates and Time

SSL certificates require the device has reliable timekeeping in

order to check certificate validity. Your product needs to keep

time – both with an on-board real-time clock and by regularly

consulting a time server. Irregular time may present problems

with authenticating your certificates between device and OTA

server.

If your device permits adjusting the time manually, setting

the time outside a certificate’s valid date range can result in

unexpected errors. This can impact secure protocols, and any

other process that relies on a valid SSL certificate. If you grant

users the capability to adjust the device’s time, it’s crucial to

understand these potential implications.

	 4.5. Payload Encryption

Sending updates (including compressed or delta files) without

encryption can expose device software to reverse-engineering

risks or tampering with the contents. We recommend encrypting

the update payload to prevent any misuse, as well as any USB

or offline update packages. Similar to the rationale provided in

When Certificates Go Bad

It’s common knowledge that certificates expire. But they can also become blacklisted. When a certificate authority
faces a security breach, it might become compromised, which in turn will invalidate all of the certificates issued by
that authority. Additionally, certain attacks can result in fraudulent certificates being issued, allowing attackers to
gain access to devices by faking authentication credentials. Granted, these are infrequent situations, but it pays to
evaluate your OTA scheme against these events to be prepared should they arise.

KDAB — Trusted Software Excellence 17

section 4.3 on certificates, use the strongest keys that you can

manage on the device.

	 4.6. Server Protocol

If you use a commercial or open-source solution, the protocol

between the devices and update server will be already decided

for you. If you’re creating your own update server however, then

you need to decide what protocol is necessary. If you’ve already

encrypted and authenticated the update payload, then it might be

acceptable to use plain HTTP.

Another option is to set up a dedicated server and develop

your own protocol. This gives you complete control over the

entire system, eliminating the need to rely on third-party web

server code or external signing authorities. An advantage of

this approach is that external entities can’t force you to update

your server or certificates when you don’t want to. However, this

can lead to a false sense of security. While avoiding software

or protocol updates reduces the danger of externally forced

updates, it doesn’t necessarily enhance security. That said,

creating your solution from scratch is a lot of work. A home-

grown solution is probably overkill, especially if your team lacks

cryptographic experience.

	 4.7. USB

Do you need to allow updates from a USB stick? For devices

without network access, it might be the only choice. A USB

update process (a “standalone update”) can use most of the same

mechanics as an OTA update, making it a reasonably low-effort

addition to an existing OTA process. And many embedded devices

will have a USB port either as part of an off-the-shelf board or

already used for other purposes.

USB updates are particularly useful in certain situations:

18 KDAB — Trusted Software Excellence

	• Unavailable Internet. In cases where connectivity isn’t reliable

or affordable (the problem cases in the above Network section),

USB updates are practical.

	• Emergencies. When updates fail due to a disrupted server

connection (as discussed regarding HTTPS in the Encryption

section), USB updates can provide a work around.

	• Field support. Field support teams can use USB software

updates to help customers recover from problems when OTA

updates are not working.

	• Testing. Testers benefit from USB updates as it allows them

to easily switch between builds for bug reproduction and

verification purposes.

	• Manufacturing. If it’s impractical to set up a local update

server at a manufacturing plant, USB updates can be a viable

alternative.

However, USB updates come with their challenges. The process

has several technical steps that might make it overwhelming for

average users. As a result, regular customers might only resort to

this method in emergencies, often with help from support staff. It

is much more useful for trained personnel – developers, testers,

and support staff.

	 4.8. Right to Repair

The right to repair is increasingly a significant consideration. This

allows device owners to update their devices outside of your

controlled process. Though not universally mandated, certain

jurisdictions may require it for specific classes of device, and

the consumer-driven push for more right-to-repair legislation

is growing. Even if it’s not currently affecting your industry,

incorporating these sorts of features can reflect a commitment to

customer service and corporate responsibility.

KDAB — Trusted Software Excellence 19

So, what does accommodating the right to repair look like for an

update solution?

	• Providing a bypass to the process. Any method to bypass

the server authentication or signed-image validation process

should be a manual one. If your device can accept unsigned

updates over-the-air, this capability will be certain to be abused

by hackers. A USB key update that requires physical device

access is a safer method for user-initiated side-loads.

	• Voiding the device warranty. Personally adjusting the

software can compromise device functionality, making support

unfeasible or impractical. Thus, user-initiated software

installations should void the warranty.

	• Warning the user. Given the warranty implications and

potential loss of support, users should be well-informed before

making personal modifications. Issue a clear warning (and/

or disclaimer) during the update process, ensuring users

understand the ramifications before proceeding.

	• Tracking user software. User installed software should be

tracked so that your support team knows if a warranty still

applies and whether they can update the firmware remotely.

To signify an unsigned update is installed, you could blow a

hardware fuse, making the transition to a user-maintained state

irreversible.

5. Timing

	 5.1. Device Reboot

When is it safe to put a newly downloaded software image to work

– in other words, reboot the device? This is highly dependent on

what you expect from your device. Consider the following:

	• How long does the reboot process take?

20 KDAB — Trusted Software Excellence

	• Does the device have expected or predictable downtimes?

	• Does the device need to meet a specific uptime guarantee?

	• What happens when the device becomes unavailable?

To understand how these answers impact your reboot strategy,

let’s walk through a couple of examples.

Updating a car’s software is straightforward as long as it’s not

driving. This means a car updater can postpone updates until

the car is turned off when it can then reflash to be ready for the

next trip. Given that cars, even autonomous ones, are not in

continuous operation, the delay is minimal. This approach is the

same for consumer devices that are turned on and off regularly,

like televisions, game consoles, kitchen appliances, and audio

systems.

However, many devices need to run constantly and/or be ready

at an instant’s notice. Examples include factory PLCs, industrial

monitoring systems, network routers, HVAC systems, hospital

patient monitors, security alarms, and telecommunication relays.

These devices typically operate in controlled environments

and so have defined downtime periods like factory holidays or

planned network outages for equipment installation. For such

devices, asking user permission before applying an update may

be necessary to ensure adequate preparation for any brief offline

periods.

	 5.2. Security Advisories

Track common vulnerabilities and exposures (CVEs), security

patches, and security advisories related to your product’s software

(and hardware). When you get these advisories, evaluate them,

integrate new security patches into your build, and reissue

updates. This includes the OS, BSP, drivers, libraries, open-source

code, and the tool chain, even from software suppliers. To reduce

KDAB — Trusted Software Excellence 21

update churn, consider batching up a series of patches before

pushing new updates out to customers. Whether a batching

strategy makes sense depends on the severity of the issues

found; critical vulnerabilities may demand immediate updates.

If you’re not doing this best practice, at a minimum plan to revisit

your CVE exposure every six months. Review all components

within your software bill of materials (SBOM) and see if any critical

vulnerabilities need to be plugged before they become major

problems. It’s worth noting the impending Cyber Resilience Act in

the European Union may mandate manufacturers adopt certain

requirements for addressing vulnerabilities and OTA, forcing

security updates to be rolled out by default while allowing the

user to opt-out.

	 5.3. Update Batches

Releasing updates to all devices at the same time might not

be possible due to server bandwidth. Splitting the update into

smaller groups can help balance the load and resolve server

bandwidth issues. If you have test groups, like in-house testers or

beta users, they can receive updates and provide feedback before

a broader release. Geographical segmentation is also beneficial,

allowing updates to be timed to user time zones, which can be

handy for support reasons.

6. Process

	 6.1. Integration

A core feature of an IoT device is its updatability. However, an

update mechanism often isn’t added to software until late in the

development process. This leaves all of the update-specific testing

crammed towards the end of the project.

Our advice is to integrate the update system functionality as

22 KDAB — Trusted Software Excellence

early as possible. Early integration lets you get extra milage on

update features, ensuring good test coverage. Once the update

mechanism is in place, it also facilitates timely delivery of bug fixes

and new features to both in-house testers and beta users before

the official release.

	 6.2. Builds

The build process for a new update should do absolutely

everything possible automatically. Of course, the build should

update version numbers and create the final software image. But

it should also sign the image, push it to the server, and kick off

the deployment process. Once the software is ready for release, it

should be a one-button operation to send it out to your devices.

This automation ensures that your team can successfully roll out

new software even under high stress situations like a zero-day

vulnerability or a fatal flaw.

KDAB — Trusted Software Excellence 23

What is KDAB’s Software Development Best Practice series?
This series of whitepapers captures some of the hard-won experience that our senior engineering staff has
developed over many years and projects. Offered up as a grab bag of techniques and approaches, we believe
that these tips from KDAB engineers and other industry experts have helped us improve the overall development
experience and quality of the resulting software. We hope they offer the same benefits to you.

View all the parts of this whitepaper series online at: www.kdab.com/publications/bestpractices/

24 KDAB — Trusted Software Excellence

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for

architecture, development and design of Qt, C++ and OpenGL

applications across desktop, embedded and mobile platforms.

KDAB is the biggest independent contributor to Qt and is the

world’s first ISO 9001 certified Qt consulting and development

company. Our experts build run-times, mix native and web

technologies, solve hardware stack performance issues and

porting problems for hundreds of customers, many among

the Fortune 500. KDAB’s tools and extensive experience in

creating, debugging, profiling and porting complex applications

help developers worldwide to deliver successful projects.

KDAB’s trainers, all full-time developers, provide market leading,

hands-on, training for Qt, OpenGL and modern C++ in multiple

languages.

www.kdab.com

© 2023 the KDAB Group. KDAB is a registered trademark of the

KDAB Group. All other trademarks belong to their respective

owners.

