
Andrew Hayzen | Software Engineer at KDAB

The Developer’s Guide
to Containers
Using containers to maximize productivity

KDAB — the Qt, OpenGL and C++ experts 2

Containers are an amazing tool for modern software development
that can dramatically simplify many challenging problems. But is
there more to discuss besides what we already covered in our
Containers in Embedded whitepaper? Why, yes there is.

This is the quick guide to all the ways containers can improve our
lives as developers. It assumes that you’re already familiar with the
technology through tools like docker, but please read our other
whitepaper first if you need a primer.

Containers for development

What are some of the most practical uses for containers that most
of us can take advantage of?

Multiple machines

If you have multiple computers (such as a desktop and laptop,
or multiple laptops), containers make it trivial to move projects
between machines. Instead of worrying about having all the right
tools, files, or directories you need on both computers, it’s easy to
put the whole mess in a container. Then just copy the container
to any new machine you need to work on, and you have a setup
that’s certain to be right every time.

I hear you saying, “I just keep all my tools in git.” That might
work for smaller, self-contained tools, but git isn’t terribly binary
friendly, and you aren’t likely to create a git repository at the root
of your filesystem to catch files installed into /bin, /usr/lib, or /etc.
Containers let you corral big or invasive tool installations, making
containers a more widely applicable solution.

Multiple projects

Multiple projects that share components can be a hassle. If those
projects are built with different versions of shared libraries, you’ll
often find that you’re managing conflicting dependencies unless
you can bring all projects to the same baseline set. That’s not
always possible, especially if you’re working on software that’s
outside of your organization’s control like open-source projects or
third-party components.

However, if each project puts all its files – including any dependent
libraries – into a container, these projects can live side-by-side
without inflicting dependency hell on its developers. This can be

Containers let
you corral big

or invasive tool
installations,

making containers
a more widely

applicable solution

https://www.kdab.com/wp-content/uploads/stories/Containers-in-Embedded.pdf
https://www.docker.com/
https://www.kdab.com/wp-content/uploads/stories/Containers-in-Embedded.pdf
https://www.kdab.com/wp-content/uploads/stories/Containers-in-Embedded.pdf

KDAB — the Qt, OpenGL and C++ experts 3

particularly handy if your company works on software projects for
multiple clients. Every client’s environment goes into a separate
container, allowing clients to use whatever library, compiler, or
tool chain they need without impacting any other environments
the developer manages.

Experimentation

Dying to try out that new tool update? Nobody wants to find
out a new package you just installed overwrote files that your
project depends on, like shared libraries with a later (and API
incompatible) version. Containers allow you to download and try
out new software without fear that you’re going to mess things
up. With a properly containerized environment, it’s easy to bring
your computer back to exactly where you were before you started
trying out experimental code.

Using WINE to run Windows apps in Linux is a perfect case-
in-point. A WINE installation is notorious for needing tons of
assorted files. To get rid of WINE to go back to a known system
state is very challenging, since you need to remove not just the
app, but anything else it may have installed. Putting a WINE
app into a container gives you the confidence that you can just
delete the app and guarantee you’re back to normal, with no
dependency hangover.

Sharing

Your project is scaling up, and you need to include other
developers, but it takes them more than a day to be productive
just because of the development environment setup. That’s why
you need to put your development environment in a container.
Better yet, if you keep all the team’s development containers in a
central registry, you can make it simple to add new members to a
project, even when they’re external or outsourced resources.

A containerized development environment also makes sense
for small, isolated projects that don’t need to scale. What if the
only person who builds your company’s device drivers suddenly
goes to the hospital or takes parental leave? Containerized
development environments can help others take over in the
interim, and a well-organized corporate container registry can
help your company maintain proper succession planning.

Containers allow
you to download
and try out new

software without
fear that you’re

going to mess
things up.

KDAB — the Qt, OpenGL and C++ experts 4

Continuous integration (CI)

A lot of tools that software engineers use during active
development are overkill for the build and test environments. Why
does that matter? Trimming out the fat lets you spin up more test
or build instances to cut cycle times, and lets you run them on less
capable machines.

Containers are the perfect solution to maximizing your
resources since containers can build upon other containers to
create concentric rings of capability. Leaving tools out of the
development stage that doesn’t need them ensures that every
part of the development workflow is as efficient as it can be.

Figure 1: Using concentric containers for stages of development lets you layer on
the functionality you need without duplicating the container contents.

Dependencies and documentation

Have you ever created a project and found it wouldn’t build
on another machine because you already had half of what you
needed installed on your main development system? (Oh yeah, I
forgot I needed to install Boost first ...)

Containers can help you ferret out any dependencies that you

Containers are the
perfect solution to

maximizing your
resources since
containers can

build upon other
containers to

create concentric
rings of capability.

KDAB — the Qt, OpenGL and C++ experts 5

need to build or run your software. Start with a blank container
and add things piece by piece until you’re sure that everything you
need to run the application is clearly identified without pulling in
anything unnecessary. This also helps you document what pieces
are needed since you need to know exactly what is going into the
environment.

Containers for desktop

What specific ways can containers be used in desktop application
development?

Graphical apps

Running command-line applications are a container’s strength.
That said, it doesn’t seem possible to run GUI applications within
a container. After all, containers encapsulate applications so that
they are isolated from the hardware they’re running on, and the
screen definitely qualifies as hardware. However, by sharing X11,
VNC, or Wayland sockets between the container and the host, you
can run an application within a container and still use the screen.

Microservices

Although a microservice architecture is a recent trend in software
organization, not all development teams are using it since it
comes with some drawbacks around speed and complexity.
However, one of its main benefits is scalability – something
that’s an ideal match with containers. Placing microservices in
containers allows you to spin up as many instances as you need
to handle your load.

Web

Developing web sites is a natural fit for containers since you can
easily move between local interim environments to the hosted
version. Create a container that emulates the web hosting
environment – with your own Apache, PHP, MySQL, and other
server-side tools – and your browser won’t be able to tell the
difference. Since the browser provides the platform integration
needed to run client-side software, it doesn’t need any special
access outside the container.

Developing web
sites is a natural
fit for containers

since you can easily
move between

local interim
environments to

the hosted version.

KDAB — the Qt, OpenGL and C++ experts 6

Containers for packaging

There are hundreds of Linux distributions out there, and you
can’t always find your favorite application for your preferred
distribution. While installing programs from source is an option,
it’s time consuming at best. At worst, it doesn’t always work if
autoconf gets something wrong, if critical build files are missing, or
if cross-dependencies cause the make to mysteriously fail.

Flatpak and Snap

Flatpak is a packaging system for Linux that places all the runtime
requirements for an application into a container along with the
application to help both Linux users and developers. By providing
all dependencies along with the app, Flatpak supports executables
that always run as intended on every Linux distribution. Like
Flatpak, Snap provides a containerized application packaging
environment that works with any Linux distribution, making it
much simpler to deploy and use apps. Both Snap and Flatpak
provide their own container environment through standard Linux
APIs. That is, neither is built on top of docker.

Figure 2: Flatpak architecture allows one runtime setup to be inserted into
multiple apps.

By providing all
dependencies

along with the app,
Flatpak supports
executables that

always run as
intended on every
Linux distribution.

https://www.flatpak.org/
https://snapcraft.io/

KDAB — the Qt, OpenGL and C++ experts 7

What are the biggest differences between Flatpak and Snap?
Snap provides a centralized and controlled app store and better
supports embedded development, while Flatpak supports
distributed application repositories and better supports desktop
apps.

Benefits of containerized packaging

Using Snap or Flatpak means you get to build, test, and debug
the same image that users are using. These environments
provide already created base images that let you start with basic
configurations (such as toolkits like Qt, KDE, or GNOME, and
languages like C++, Python, Electron, Ruby, or Rust). They also
offer application repositories – in other words, a Linux application
store that users can browse. This also provides a central point to
release maintenance builds.

Containers inside apps

We’ve so far talked about containers as a developer tool and an
app distribution mechanism. However, you can use container
technology as part of your application implementation too.

Extra security

Let’s say you want to add plug-in support to your application.
If those plug-ins come from third-party developers, you might
want to protect the application and your user by running plug-
ins within their own containers. As an example, the Nautilus file
browser for GNOME isolates the thumbnail applications that it
launches to generate thumbnail images. (Nautilus thumbnailers
are run using bubblewrap, which uses Linux namespace
technology to implement a container-like application sandbox.)

Consistent execution

What about launcher applications? If your primary application
launches many different sub-applications, what happens if two
different apps use different versions of the same library?

To ensure all apps run properly, you’ll need to tightly control
the environment for each launched application by putting each
app into a container. Game distribution systems might be an
ideal candidate for this, like Valve’s Steam. (Valve is currently
transitioning their Steam engine to use containers for all games.)

Using Snap or
Flatpak means you

get to build, test,
and debug the

same image that
users are using.

https://github.com/containers/bubblewrap

KDAB — the Qt, OpenGL and C++ experts 8

In this case, the Steam engine itself runs normally on the host, but
each game runs in a separate container to ensure it has the same
environment it depended on when it was written. This lets games
that are several years old still work properly, even when most of
the other libraries have been updated several times in the interim.
Games are also a good candidate for containerization since they
primarily have screen and audio output and keyboard/mouse/
joystick input – a few things that are centrally controlled.

Controlled environments

A browser-based laptop like chromebook works great for some
people – families, students, and non-power-users – and can
be a good way for a limited IT staff to manage many machines.
However, many people might appreciate an environment that
can run non-browser apps without their having to become an
administrator or programmer to install or manage their system.
An example is Endless OS. It lets you install apps that are based
on Flatpak, and it automatically pulls the latest releases of each
app, ensuring everyone has access to the best features and is
using the most secure and least buggy code.

Problem areas for containers

Containers are great – but they’re not perfect. Let’s explore
some problem areas in using containers that either require
workarounds, special handling, or can be showstoppers.

Multi-process

Since docker runs each process in one container, applications
that use multiple processes may have problems talking to each
other across container boundaries. This isn’t a problem for newer
applications that can be built as microservices with controlled
entry points. However, apps that use a wide array of inter-process
communication mechanisms between processes can be difficult
to convert to a containerized environment.

IDEs

Most developers use an IDE to write code, but how do you
use one to develop an application that’s intended to live in a
container? If your IDE is something like Qt Creator, you must put
it inside the container itself. There is an advantage to this, since
you can then work on two (or more) applications using different

Containers are
great – but they’re

not perfect. Let’s
explore some

problem areas in
using containers

that either require
workarounds,

special handling,
or can be

showstoppers.

https://endlessos.com/

KDAB — the Qt, OpenGL and C++ experts 9

versions of Qt. But the big disadvantage is the management effort
and excessive size of the many Qt Creator instances installed into
your application containers.

Figure 3: VSCode Remote Container architecture lets you use the full power of an
IDE to develop a containerized application.

If, on the other hand, you’re using VSCode, you’re in luck. VSCode
is very well-integrated with containers and can manage them all
automatically if you install the Remote Containers plug-in. To start,
you create a small json file to describe how you want to build and
start your development container. From there, VSCode builds
and spawns the container as needed, automatically connecting
the runtime to the IDE debugging services through the container.
With VSCode, you don’t even realize you’re running the application
within a container.

//devcontainer.json
{
 “name”: “Node.js Sample”,
 “dockerFile”: “Dockerfile”,

 “settings”: {
 “terminal.integrated.shell.linux”: “/bin/bash”
 },

 “extensions”: [“dbaeumer.vscode-eslint”],

 “forwardPorts”: [3000],

 “postCreateCommand”: “yarn install”,

 “remoteUser”: “node”
}

Example 1: sample devcontainer.json gives you some simple options to use
VSCode with the Remote Containers plug-in.

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers

KDAB — the Qt, OpenGL and C++ experts 10

OSes

You may have noticed that most of our examples refer to Linux.
What about Windows or MacOSX? Both OSes support docker (or
other) containers. However, most of the container-based solutions
are being actively developed on Linux. Partly this is because
containers have a heritage that Linux shares with the cloud. It
also could be because Microsoft and Apple provide their own
application stores and control the development environment. As
such, it becomes less valuable and more difficult to build effective
containerized packaging options for them.

Regardless of the reason for a dearth of non-Linux container
solutions, another problem is that containers aren’t a true cross-
OS technology. Unlike a virtual machine, a container depends on
the underlying OS, which means it can only run containers that
were built for that OS. If you want to run Linux containers, you
must run them on a Linux machine or a Linux virtual machine.

Integration

Containers keep applications within their confines, which can be a
problem if they need to access anything external to the container.
We’ve already talked about how graphical applications can get
around this through X11, VNC, or Wayland sockets. But what
about anything else the application may need to access, such as
sound, printing services, file selection dialogs, clipboards, PDF
viewers, or the like?

Environments like Flatpak and Snap try to accommodate this
limitation in several ways. For example, they expose D-Bus, which
allows applications to send and receive messages to and from
services that are running on the host machine. Both Snap and
Flatpak further help application developers by incorporating xdg-
desktop-portal, which uses these D-Bus messages between the
container and host to provide various desktop services, such as
choosing files, opening a URI, or printing.

However, any hardware resources or software services that the
container or container environment doesn’t explicitly support
will need to have a workaround that allows the containerized
application to use it. Just like xdg-desktop-portal does, these
services require an in-client service that can forward requests to
an authorized service running on the host that accomplishes the

Unlike a virtual
machine, a

container depends
on the underlying
OS, which means

it can only run
containers that were

built for that OS.

KDAB — the Qt, OpenGL and C++ expers

https://www.freedesktop.org/wiki/Software/dbus/
https://snapcraft.io/docs/xdg-desktop-portals
https://docs.flatpak.org/en/latest/desktop-integration.html
https://github.com/flatpak/xdg-desktop-portal
https://github.com/flatpak/xdg-desktop-portal

KDAB — the Qt, OpenGL and C++ experts 11

task. Whether this is problematic or not depends on how much
of these features your application requires and whether the
container in question provides a means to implement them.

Containers conclusion

Once you understand all containers have to offer, it’s easy to
conclude why they’re considered one of the truly defining trends
of the last decade. If you’re trying to decide if containers make
sense for you, drop us a line. We’re always happy to talk software
and meet new people.

KDAB — the Qt, OpenGL and C++ experts 12

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for
architecture, development and design of Qt, C++ and OpenGL
applications across desktop, embedded and mobile platforms.
KDAB is the biggest independent contributor to Qt and is the
world’s first ISO 9001 certified Qt consulting and development
company. Our experts build run-times, mix native and web
technologies, solve hardware stack performance issues and
porting problems for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive experience in
creating, debugging, profiling and porting complex applications
help developers worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide market leading,
hands-on, training for Qt, OpenGL and modern C++ in multiple
languages.

www.kdab.com

© 2020 the KDAB Group. KDAB is a registered trademark of the
KDAB Group. All other trademarks belong to their respective
owners.

http://www.kdab.com

