
Nathan Collins | Senior Software Engineer, KDAB

Designing Your First
Embedded Linux Device 3

Choosing Your Software Stack

2 KDAB — the Qt, OpenGL and C++ experts

KDAB — the Qt, OpenGL and C++ experts 3

Deciding on the various software components in your stack is a
crucial step when creating your first embedded Linux device. You
want to build a stack that meets your objectives now and brings
continued value in the future. However, there are so many tools
you can combine to build and maintain a successful product, it
can be difficult to know where to start.

This whitepaper looks at the choices you have for the entire
software stack from the OS to the application and gives you
things to consider at every step.

Operating system concerns

Should we go with Linux or something else?

Embedded Linux is the right choice for most, but not all. Linux
is pretty good at responding to devices within a reasonable time
– but it makes no guarantees. If your product has enough time-
critical needs for responding to certain stimuli, you might want
to consider an RTOS such as QNX Neutrino RTOS, GreenHills
INTEGRITY, or VxWorks.

These operating systems allow you deterministic control in
managing time-critical devices. They are all POSIX compliant, so
while they aren’t technically Linux and will have some specialized
commands, tools, and APIs, in general, they have a Linux-like feel
and should compile most Linux source without trouble.

From experience: The costs of a swipe
iPhone user interfaces not only need powerful graphics, but responsive touch screens. We worked with one company who was

trying to “iPhone-ize” their product on a very limited processor that was not much more than a microcontroller. We helped

them cut their original design to better fit the hardware by eliminating animations, gradients, and other flourishes. But also

problematic were the touch-screen gestures. Because no physical buttons were planned for the hardware platform, the UI

couldn’t fully eliminate gestures. A lot of effort was expended in optimizing and fine tuning to disguise how non-fluid the

graphics were. Mobile phones have set consumer expectations very high, and companies can spend a lot of time and money

trying to meet those expectations.

4 KDAB — the Qt, OpenGL and C++ experts

Time-critical Linux

Linux isn’t as intimately controllable in the time domain as an
RTOS, and it won’t ever be hard real-time. However, if you want
to stick with Linux for your mainline development, you have other
options besides an RTOS for handling time-critical tasks. For
instance, you might be able to get away with a real-time patch to
the kernel, as long as you avoid other known trouble areas like
page swapping.

Rather than hacking Linux into a task it was never designed to
handle, it’s probably better to give your real-time tasks the regular
servicing they require with a little outside assistance. (Some of
these solutions can also work well if you have power-sipping
modes so you may be able to solve two problems with one
architecture.)

	• Hypervisor. You can add a hypervisor that sits underneath the
OS. This allows you to run some code alongside Linux – either
via an RTOS or bare metal code that can handle the timing of
important tasks.

	• Onboard processing. Many CPUs have companion processors
on the die such as an ARM M4 or DSP. If these co-processors
have access to the needed hardware and aren’t required for
other tasks, you may be able to use them for time-critical
purposes or leave them on when the main CPU is powered
down.

	• Microcontroller. Dedicating a separate microcontroller can
be a good approach for time-critical or low-power tasks. These
can be very simple processors with no need for a sophisticated
OS. The software is also simple – just an event loop to poll
your devices or a perpetual sleep mode that handles anything
needed via interrupts.

	• Dedicated core. Although this can be a huge waste of
processing capacity, you may be able to reserve a core for

KDAB — the Qt, OpenGL and C++ experts 5

your time-critical tasks. This approach can also work for
low-power applications since some CPUs have cores that
are tuned for either performance or power consumption,
letting you shut off the higher-current cores when they aren’t
needed. This requires some special configurations to manage
and necessitates page locking the real-time code and data,
but it might be a reasonable approach if there are no good
alternatives and you’ve got processing power to spare.

In all cases, whether a solution works properly or not is completely
dependent on the demands of your time-critical hardware and
how you need to access it. As an example, if the hardware you
need to service is on a bus that’s only accessible by the main CPU,
a microcontroller or co-processor solution is impossible.

No matter what the solution, you’re adding complexity to the
design. You need two software environments and toolkits. You
need to communicate between time-critical and non-time-critical
software. This very important channel must be designed very
carefully so as not to become a bottleneck.

Fine tuning the filesystem

Most users don’t ever think about the filesystem. However, if
you’re building an embedded system, it can be something you
think about a lot. Here’s a few of the things we think about – the
three ‘W’s and three ‘H’s.

From experience: Browsers need big horsepower
HTML has a big advantage in cross-platform development, as well as being able to naturally support remote UIs. However,

browsers use many layers of abstraction and software to create an interface. We worked with one customer creating a SCADA

system who had designed a browser-based UI. They used Qt Web Engine, which has GPU acceleration due to its Chromium

roots – normally a good choice, but it’s designed with faster hardware in mind. In this case, the hardware rendering on this

older GPU was slowing down the browser. We were able to double the frame rate by avoiding the GPU accelerated code path

and switching to software rendering. Unfortunately, the frame rate was still slow at under 10 frames per second and there was

little else that could be done using this browser environment and fixed hardware combination.

6 KDAB — the Qt, OpenGL and C++ experts

	• Where. Should you put your file system on board the chip or
on a removable storage like an SD card or USB flash? Whether
you need to do this depends on the size of the onboard
storage; if it’s not big enough, you’ll have to augment it with
something you can plug in. That’s also the case if you need
quick replacements either for instant firmware upgrades, in-
field diagnostics, or other large and instant data transfers.

	• Which. Linux offers a wide variety of file systems types that you
can choose, such as ext4, JFS, ReiserFS, XFS, and Btrfs. These
all have a wide array of benefits and limitations to consider,
such as maximum number of files, maximum file size, file name
length and encoding, file system overhead for many small
files, file naming conventions, commonality/exchangeability,
compression, performance, automatic leveling, fragmentation
behaviour, speed on starting up, concurrency behavior, and
crash resilience.

	• Writeable. Does your filesystem need to be writeable? In most
cases, yes but maybe not the whole thing. Making one volume
writeable for logs and user data while another is read-only can
prevent corruption or cybersecurity issues, but because most
applications can develop intricate file system dependencies, this
is something that you should consider early in application design.

	• How fast. Does your file system need to be as fast as possible?
If you’re constantly streaming large amounts of data for video
recording or other sensor collection, you want to choose the
flash so that the hardware can keep up with read and write
demands and choose the filesystem so that it works well with
continuous writing of large blocks.

	• How much. Are you writing and flushing constantly to the
file system for persistent logs or database updates? Not only
does this have performance considerations, but it can also
prematurely wear out your flash storage. Most flash chip
controllers have built-in wear leveling, but you should still
perform some back-of-the-napkin estimates to see how long

KDAB — the Qt, OpenGL and C++ experts 7

your flash chip can be expected to last. As the disk space on
your product’s flash fills up, will you have enough space to add
new features? Also critically, will you have enough space for
your update mechanism (if it needs to swap firmware images to
update)?

	• How long. If your system is expected to last a very long time in
use, the lifespan of the flash contents becomes an issue. Most
flash storage has a maximum length of time it can store bits
before they start to decay. While that’s usually in the order of
years, if your product is designed to withstand sitting unused
for long periods, this can be a problem. Used constantly,
the flash can rewrite to refresh bits before they decay, but
infrequent use can shorten your product’s lifespan.

Managing the distribution and board support package

Presumably, you’re doing the lowest-effort approach by getting
a Linux distribution from your board vendor. If that’s the case,
you need to answer a few questions about that distribution and
its board support package (BSP). The biggest of these: is your
vendor’s Linux suitable for use in production? Not every board
vendor wants their Linux used for real customer systems and
that’s especially true for silicon vendors who almost always expect
their Linux is for eval purposes only. They don’t want to be on
the hook for any bugs or unapplied patches and that can put you
back in the OS business.

From experience: Flash speed seriously impacts boot speed
There is a very large range in performance for mass storage flash. In many cases, normal system behavior doesn’t demand

anything particularly speedy. But slow flash chips are not compatible with a quick booting requirement – and these are

often the ones that cannot be upgraded since they are soldered in place. We’ve seen many customers struggle with this when

they’re assuming that flash size is their biggest issue when it turns out their larger problem is the speed of their flash, which

significantly limits how quickly they can boot the system. Automotive is one industry where boot speed is a well-known concern,

but consumer products too often need fast booting. An “instant on” approach lets the user get long lives out of their limited

battery – but only if there isn’t a perceptible time difference between a cold and warm boot.

8 KDAB — the Qt, OpenGL and C++ experts

Many board vendors now let you build your own Linux – and
that’s a great thing. Yocto and Buildroot are probably the two
most popular options that let you easily create and maintain your
own distribution. Even if your Linux is not supported by the board
vendor, this is probably the best approach since customizing
the distro is so much easier with a tool rather than by hand. Like
anything, there are pros and cons to each tool, but whichever one
you pick, it’s a great way to approach your first embedded Linux
project.

Planning the application

We can’t tell you how to build your application, but we can tell you
some things to consider when planning out the software.

Microservice or monolithic

Is your application better suited to a monolithic application or
multiple services? Microservices compartmentalize an application
into many small, individual components that can be developed,
tested, and updated by independent teams. By loosely coupling
the system functions together, they provide a lot of advantages
in access, maintenance, testing, and delivery – among others.
However, micoservices do require some overhead to implement
so they may not be appropriate if you have a small development
staff or if product decomposition doesn’t lend itself well to
isolated components.

Multi-user

Is your product used by multiple users? It can be a huge problem
if you’ve created a single-user product that down the road needs
to be converted to handle multiple users. Not only would this
move require the addition of logins and authentication, but
it would also create the need to manage all databases, logs,
configuration files, and more on a per-user basis.

KDAB — the Qt, OpenGL and C++ experts 9

It’s far better to decide up front that you need multi-user
capability and later restrict it to a single user than to go the other
way. (We know, because like many of the challenges in this eBook,
we’ve helped customers work through this issue.)

Containers

Should you containerize your application? Containers are easily
adopted in a microservices architecture and provide many
benefits like better cybersecurity, streamlined development,
and simplified testing. They introduce some overhead – but
not as much as you might think – and make for really simple
development and production updates, so they’re worth
investigating.

Security

Is the vendor-supplied Linux secure? In other words, is it being
kept up to date, with all libraries and executables patched to
remove any known common vulnerabilities and exposures (CVEs),
and are they measuring security in any way that helps your team
make risk assessments? If you’re using Yocto, you can find out
yourself if there are CVEs in your Linux. To help with security, only
keep the components you directly need – the more you use, the
more you maintain.

Also important is to keep in mind things that can impact overall
application architecture and that should be designed in from the
beginning like eliminating root access, using read-only file systems
(as discussed above), or running code in protected containers and
sandboxes. If your device isn’t part of the IoT and doesn’t need
Internet access or you don’t plan on updating it remotely via OTA,
consider restricting network access to field diagnostics only or
removing it altogether.

10 KDAB — the Qt, OpenGL and C++ experts

Summary

Building your first Embedded Linux device is not easy. Hopefully
this guide gives you a good feel for the many things you need
to consider. Our engineers have deep expertise in all aspects of
embedded product development so please don’t be shy to reach
out if you have any questions or need help at any point in the
process.

KDAB — the Qt, OpenGL and C++ experts 11

This is the third whitepaper in a series of four that covers planning
considerations and lessons learned in building embedded devices
with Linux. Each whitepaper addresses a specific portion of the
development lifecycle, so you can easily focus on the guide most
relevant to your current stage of development. If you don’t find the
advice you need in this whitepaper, check out our first, second, and/or
fourth whitepaper in the series.

View the four parts of this whitepaper online:
www.kdab.com/publications/embeddedlinux/

12 KDAB — the Qt, OpenGL and C++ experts

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for
architecture, development and design of Qt, C++ and OpenGL
applications across desktop, embedded and mobile platforms.
KDAB is the biggest independent contributor to Qt and is the
world’s first ISO 9001 certified Qt consulting and development
company. Our experts build run-times, mix native and web
technologies, solve hardware stack performance issues and
porting problems for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive experience in
creating, debugging, profiling and porting complex applications
help developers worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide market leading,
hands-on, training for Qt, OpenGL and modern C++ in multiple
languages.

www.kdab.com

© 2020 the KDAB Group. KDAB is a registered trademark of the
KDAB Group. All other trademarks belong to their respective
owners.

