
Matthias Kalle Dalheimer, Jon Kalb, Ivan Čukić and Jens Weller

C++ - How it Got Here,
Where it’s Going

With contributions from

KDAB — the Qt, OpenGL and C++ experts 2

We talked to a panel of C++ experts, the owner of a leading soft-

ware expertise company, and C++ evangelists

The C++ programming language is considered by many to be the
most powerful language on the planet. It is used for operating
systems, web browsers, games, embedded software, autonomous
cars, medical technology, and many other applications. Major
companies such as Facebook, Google, Amazon, and many others
rely on C++ to run their data centers.

Since its inception four decades ago, C++ has expanded many
times with performance, efficiency, and flexibility of use as its
main design highlights. Its most recent release, C++20, became
generally available in December 2020.

We talked to a panel of C++ experts, evangelists, and devotees
from both sides of the pond to understand a little more about
C++ – its current position in the development community, its
history, and its future.

Overview

C++ is a language that has evolved over decades; today it
gives programmers a lot of semantically powerful, yet often
syntactically arcane tools. As such, it isn’t particularly simple for
new programmers to learn. Languages have come along (such
as Java, Python, and Ruby) that have cherry picked some C++
features, while simplifying, abstracting, or dropping others. These
newer, purportedly easier-to-use languages have taken some of
C++’s market share and mind share – but many developers have
realized that they didn’t always get the functionality they needed
from these newer competitors.

For Ivan Čukić, the author of Functional Programming in C++, the
main benefit of C++ is that it gives developers enormous power.
“You can go as low as the hardware or as high as the clouds,” he
explains. “It’s probably the only language where you can write
really low-level code and simultaneously develop using functional
programming idioms.”

The peaks and valleys of C++ popularity

C++ was originally developed by Bjarne Stroustroup at Bell Labs
and AT&T for internal use. After its first commercial release in
1985, for a period of time C++ was the leading candidate for
developing new software paradigms such as object-oriented

“You can go as low
as the hardware
or as high as the

clouds”

KDAB — the Qt, OpenGL and C++ experts 3

As other languages popped up, grew, and died, C++ development

and standardization continued its steady pace

programming and generic programming using templates.
Unlike the academic languages it emulated, C++ could be used
to develop industrial-grade software. But without a universally
adopted language standard through the 1980s and 90s, compiler
vendors continually introduced incompatible features and
platform-specific experiments. This made the language a moving
target, making it hard for developers to move code and expertise
between environments.

In 1998, that was helped with the release of the C++98 language
standard. However, a decade of fighting compiler incompatibilities
and bolted-on behaviors had taken its toll. Despite the
standardization effort, C++, as Ivan says, “seemed stagnant for a
long time”, with a decline in C++ interest in public forums while
other, newer languages got more attention. But the continual
developments and improvements in C++ hadn’t stopped during
that time, and new developments in technology put its strengths
on a path for a major rediscovery and renaissance with the 2011
release, as we’ll see.

C++ invisibility – a business owner’s perspective

As other languages popped up, grew, and died during these early
days, C++ development and standardization continued its steady
pace, supporting language growth that was highly consistent
across platforms. This stability spawned mature C++ frameworks
and libraries that grew far beyond their initial developer
contribution. One of these was Qt, originally a proprietary GUI
framework that eventually grew to a widely supported open-
source project, aiding many aspects of cross-platform application
development.

Matthias Kalle Dalheimer, was one of the first programmers to
take up Qt and even wrote the first Qt manuals some twenty years
back. Along with many other languages and frameworks, “since
around 2011, the Qt framework supports two implementation
languages for application writers,” he says. “It has C++ for
the back-end and a choice between C++ and QML, which is
essentially JavaScript-based, for the front-end.” The simplicity of
the JavaScript language made it easier for Qt developers to build
GUIs, reducing the C++ “scare” factor. However, Qt’s support for
both C++ and QML now meant that developers could often opt to
implement things in either language.

C++ seemed
stagnant for a long
time with a decline

in C++ interest
in public forums

while other, newer
languages got more

attention.

KDAB — the Qt, OpenGL and C++ experts 4

 “This told me that there was an ecosystem of C++ developers out

there, but it was essentially invisible...”

It was interesting to see the choices people made back then
with Qt’s two languages. Explains Kalle: “Many times, QML got
implemented too far into the back end. Algorithmic bits of
code for speed and energy efficiency that should have been
implemented in C++ were implemented in JavaScript simply
because a company had more JavaScript experience.” This led to
loss of efficiency and the performance that only C++ can give.

His company, KDAB, often needed to educate customers about
where to draw the line – at what point to hand over between
the two languages. At times they also suggested going with C++
for an entire project. The problem, at that time, was in finding
C++ developers, especially in Europe. Few university curriculums
used C++ as an implementation language and typically the vast
majority of young developers entering the workforce were recent
graduates. The only time they had a lot of C++ experience was if
they had used it in open-source projects – such as through the
open-source project KDE, for which Kalle was also a co-founder.

Kalle knew C++ was being used as an implementation language
in projects as widely varied as browser engines and high-
performance finance computing. “This told me that there was
an ecosystem of developers out there,” he says. “But it was
essentially invisible because at the time there were hardly any C++
conferences, few books published on the language, podcasts were
rare, and there was little on YouTube.” This is what led Kalle to
jump at the opportunity to support the initiative from Jens Weller
when he approached him to sponsor a new conference Jens was
creating in Europe called Meeting C++.

Giving conferences the spark

Jens had been inspired by what was going on in the US, where
the situation was similar; there had been very little available on
the conference circuit for C++ developers before 2011. One large
software development conference that primarily addressed C++
programmers had recently closed down. Another conference,
BoostCon, was primarily focused on Boost, a popular C++ library,
but this was the closest thing to a general C++ conference at the
time.

Jon Kalb had approached the BoostCon organizers with the idea
to refocus the conference on C++, rename and grow it, and they
had agreed. The result was C++Now, which had an immediate

“Algorithmic bits of
code for speed and

energy efficiency
that should have

been implemented
in C++ were

implemented
in JavaScript

simply because
a company had
more JavaScript

experience”

KDAB — the Qt, OpenGL and C++ experts 5

 the C++ community went from almost nothing in 2011 to having

a conference in almost every major country today

success in its first year. It was at this event that Jens decided,
“There needs to be a conference like this in Europe and I’m going
to be the one to do it.” To everyone’s astonishment, Jens pulled
it off at first try. The conference he created in 2012, which KDAB
sponsored, pulled in even more attendees than the US had.

Back in the USA, Jon began to reconsider what he was doing
with C++Now. His original vision had been to grow the Boost
conference into a large mainstream C++ conference. But he
realized that if his efforts were unsuccessful, BoostCon could
be destroyed. So, he decided to start from scratch, and that
is how CppCon was born. Luckily for the C++ community, both
conferences now co-exist.

Invigorating the C++ community

Meanwhile, along with the success of Meeting C++ in Europe, the
focus became more than just about conferences. As Jens explains,
“When I talked myself into doing something in Europe, I realized
we needed a long-term perspective for C++.” He was looking for
a way to teach the new standard to people who wanted to learn
C++. “Not only proper conferences were needed, but a whole
community to support talent and let it grow.” So that’s what he set
out to build. Both Jon and Jens understood that a new generation
would be needed that would be able to step into the footsteps of
existing C++ experts who would, one day, retire.

Largely thanks to their efforts, but also because people were
really hungry for this kind of community, the C++ community went
from almost nothing in 2011 to having a conference in almost
every major country today, with many regional conferences and
countless smaller Meetups around the world.

The C++ revival

The C++ language experienced a huge revival after the C++11
standard came out in 2011. The resulting growth of these
community events since then reflects this injection of excitement,
but it doesn’t explain all of it.

As Ivan pointed out, for 13 years, between 1998 to 2011, it had
looked like C++ was essentially stagnant. “But the C++ Standards
Committee hadn’t been sitting idle”, says Jon. Rather, they

Both Jon and Jens
understood that

a new generation
would be needed

that would be able
to step into the

footsteps of existing
C++ experts who
would, one day,

retire.

KDAB — the Qt, OpenGL and C++ experts 6

Once people started carrying around “these little devices called

mobile phones”, the importance of battery life was realized

were absorbing all of the things going on in modern software
development and adding them to the language, ready for the
next release. “In 2011 when the new C++ came out,” Jon explains,
“It was like a brand-new language that just happened to be
completely backwards compatible with what we’ve been using
for decades.” What’s more, between the C++98 and the C++11
release, the number of pages in the standard had doubled to
include a huge number of new features like Lambda expressions,
range-based for loops, multithreading, and much more. This
clearly helped bring interest back to C++ and showed the
community that C++ had reestablished itself as a modern and
thoughtful language, yet it hadn’t lost its performance edge.

Technology drivers

In the book he co-authored, C++ Today: The Beast is Back, Jon
talks about how, once people started carrying around “these little
devices called mobile phones”, the importance of battery life was
realized. At the same time, big server farms were discovering
that power efficiency was critical since their biggest expense was
electricity. As he says, “Developers were also finding that a lot of
programming languages wasted CPU cycles and power to do the
same thing that C++ could do in half the time.”

Ivan adds: “As people started caring about the performance of
their software, they began to realize that there is no language that
can compare to C++ as far as performance and abstractions goes
– not C, not Java, not any other language.” An awareness tipping
point came when the electricity cost for low performance software
exceeded the cost of hiring developers to improve performance.

Performance isn’t just speed

There was a feeling in the 2000s that desktop computers were so
powerful you didn’t really need to worry about performance. Jon
reminisces about an old desktop joke, “How fast does a cursor
need to blink when you’re sitting there with your word processor?”

But these days, performance of a fully loaded desktop machine
isn’t really the issue. The low end of computing is now everywhere
– smartphones, embedded and IoT devices, and wearables –
while beyond the desktop is dominated by cloud computing and
storage. Now, optimal performance isn’t needed for speed as

They began to
realize that there

is no language
that can compare

to C++ as far as
performance and

abstractions goes –
not C, not Java, not
any other language

KDAB — the Qt, OpenGL and C++ experts 7

It’s absolutely not unusual for us to be confronted with gigantic code bases –

millions of lines of code tested for decades. You don’t want to throw all that away.

much as it is for power, either to enable longer life on batteries or
to keep server farm electricity bills manageable.

Legacy matters

Another reason for the resurgence of interest in C++ is the
recognition that legacy matters. About this, Jens says: “If you’re a
startup and have the luxury to implement everything new from
scratch, that’s one thing. However, there are many places where
code bases have existed for ten or twenty years – you’re not going
to replace and rewrite all of this legacy code.”

Kalle agrees: “It’s absolutely not unusual for us, as a consulting
company, to be confronted with gigantic code bases – millions
of lines of code that have been tested for decades. You don’t
want to throw all that away. We’ve seen so many long forgotten
bugs reoccur when massive code bases are rewritten so we
understand that this legacy can be a tremendous asset. While you
certainly want to improve and modernize legacy code and get it
ready for the next decennium, it’s not something to throw away
and just replace with the latest language-du-jour.”

Rise of the upstarts

C++ isn’t alone in its quest for performance. There are newer
languages like Rust and Dart that are vying for attention as
languages that can support high-level abstractions but also offer
low-level access and performance.

Jens explains: “From 2010 to 2012 we were in the sweet spot
where you could no longer scale by hardware. Around 2015,
you started to be able to use the cloud, but it would still cost
you a lot. This is where the new languages came from. They can
focus on performance not just in the embedded space, but also
in mobile devices.” Nonetheless, Jens likens this to an ocean
food chain with C++ at the top. Whilst there will always be some
start-ups that have the luxury to implement everything in these
new, easier to learn languages, he doubts they will ever really
become competitive. C++ has become stronger and stronger
as it standardizes and it has several implementations, unlike
other languages, which are limited to one. “Haskell, for example,

There are many
places where code
bases have existed

for ten or twenty
years – you’re not

going to replace
and rewrite all of

this legacy code

KDAB — the Qt, OpenGL and C++ experts 8

C++ allows you to mix and match paradigms, gradually evolving

your code base on your needs and your schedule

has always been popular to look at, but it’s never become
mainstream,” he says. “I’m not worried.”

In order to keep abreast of where the industry is moving and
ensure his business offering remains relevant, Kalle spends
quite a lot of time looking at and assessing what’s going on in
the programming world – different languages, frameworks and
environments. He has noticed a repeating pattern with the new
programs that have cropped up: “The Rusts, Darts, and Haskells
are solving problems that the C++ community solved a long time
ago. If you look at the details of the things that are being fixed
in the C++ Standards Committee right now, you’ll see that fixes
are in the intricate details that affect a tiny set of cases. Many
C++ developers won’t even notice them, because they are only
relevant to library writers, or because compiler magic will make
things happen anyway. But if I look at the change logs of Dart, for
example, which is a very promising and interesting language that
I had some fun programming in, the things getting fixed there
are quite fundamental.” This is of course to be expected, as these
languages are still very young, but it means those environments
aren’t as stable and dependable as C++ and won’t be for a very
long time.

From Ivan’s perspective, the best thing about these awesome
new languages is that they are teaching C++ developers how to
write better code. This is because they focus on specific things
which they do really well by restraining the developer to specific
paradigms or specific types of work. Nonetheless he doesn’t
think they’ll ever replace it. He offers a perfect case in point in his
book. C++’s flexibility allows it to borrow Haskell programming
paradigms so functional programming can be added to a broader
environment of existing code and techniques. C++ allows you to
mix and match paradigms, gradually evolving your code base on
your needs and your schedule. That flexibility is not something
that’s true for most other languages.

“New languages can be very sexy since their developers have
learned valuable lessons from C++ baggage,” adds Jon. “But the
C++ community is very well aware of what these other languages
are doing, and they bring those sexy new features into C++.”

The gateway to C++

The Rusts, Darts,
and Haskells are
solving problems

that the C++
community solved

a long time ago.

KDAB — the Qt, OpenGL and C++ experts 9

Once young people find out that some of the most dazzling

games are written in C++, it drives them to learn about it.

One of the things Kalle has always loved about his line of work
is that programmers are so enthusiastic about what they do.
“Most of them would probably program even if they weren’t
paid to do it,” he says. More often than not, like he did, they
start off writing code in their time off from college or a part-time
job, making a name for themselves doing what they love on an
open-source project. But then at some point they arrive at the
reality of needing to make money to live. “What often makes a
programming language desirable is whether it can get you a job or
not, preferably in a subset of the industry you’re interested in”, he
adds. “C++ is a very attractive language for young people to learn
since there are so many jobs in interesting areas – from games,
high-performance financial computing, scientific computing, to
wearable devices.”

Indeed, Jon observes that many find their way in initially through
games, where it indirectly comes down to performance since
games are written to make the most of machine resources. He
explains, “Once young people find out that some of the most
dazzling games are written in C++, it drives them to learn about it.”
Games have to be written with short production cycles too, which
also highlights that – contrary to old impressions – C++ can be a
very productive language.

There are also people who want to (or need to) control the
machine, he adds. “There’s a certain programmer personality that
wants to understand and control everything the machine does at
a low level, and that’s motivation to pick a systems language like
C++,” he believes. “But because it also had high-level abstractions,
they can write beautiful and easy-to-maintain code.”

Walking a fine line

Today C++ has multiple new standards being released, large
conferences, and a thriving global community. Rather than an
obsolete language, it is active and growing and attracting major
investments from tech companies.

By absorbing and translating new programming methodologies
over the years, the C++ standard is a moving target that is very
competitive to new languages, something that isn’t often well
appreciated by programmers who aren’t familiar with the latest
C++ developments.

“There’s a certain
programmer

personality
that wants to

understand and
control everything
the machine does
at a low level, and

that’s motivation
to pick a systems

language like C++”

KDAB — the Qt, OpenGL and C++ experts 10

“We’re moving the entire community forward, but we want to do

that carefully, so we don’t fracture it.”

As the C++ language continues to learn and absorb from
other developments going on in software engineering, the C++
Standards Committee has to strike a balance between continuing
to take the language in ways that offer better productivity,
safety, and expressiveness, while not making compromises on
performance or breaking legacy code. Jon explains that a big
problem is cohesiveness. “We want to add new features that some
people will use but that others won’t need or can’t implement,” he
says. “We’re moving the entire community forward, but we want to
do that carefully, so we don’t fracture it.”

But one of the unique propositions of C++ is that it has a long
and huge legacy with community, libraries, tools, platforms, and
training. Building these things are non-trivial; they don’t happen
overnight and depend on the good will of thousands of people
who care about the program. Our experts are confident that C++
will continue to thrive.

What’s next for C++?

What are the new features released in C++20 or that are being
considered for C++23 that our experts are most excited about?

Concurrency – it’s something that the OS normally takes care
of, but concurrency should be part of the language to get
more efficiency and performance improvements. Coroutines,
significantly enhance multi-threading, are in the language but with
no library support so that’s coming a little bit later.

GPU – Similar to concurrency is exploiting the GPU, and while
non-standard solutions or proprietary libraries exist, a way to
incorporate generic C++ code into current and future GPUs would
be a huge benefit.

Concepts – An earlier template metaprogramming technique
called SFINAE (substitution error is not an error) gave interesting
performance gains. However, concepts in the latest release can
now do things better, in a more straightforward, and easier to
understand and explain way.

Reflection – The easy way to do it takes a huge runtime hit, which
isn’t acceptable for C++. We want to have it so that you only pay
the price when you need it, but not if you don’t use it.

C++17 will be the
standard that most

people will care
about for a while,

and it’s also the
version used by Qt

KDAB — the Qt, OpenGL and C++ experts 11

However, as Jens and Ivan both noted, C++17 will be the standard
that most people will care about for a while, and it’s also the
version used by Qt. Ivan adds: “C++20 is sort of like the preview
release for C++23 because there are so many nice things that
aren’t fully complete. And we’re going to finish them in the next
release.” Certainly, something to look forward to.

.

Ivan Čukić is a senior software engineer at KDAB and the author of
Functional Programming in C++. He’s one of the core developers
in the KDE community, which develops the largest free open-
source C++ project, and is a participant in the C++ standardization
process..

Kalle Dalheimer is a software pioneer and the co-founder of KDE.
Most notably, he’s the founder and CEO of KDAB, the leading
consulting, training, and development company for Qt, C++ and
Open GL.

Jon Kalb is co-author of C++ Today: The Beast is Back, a speaker
and trainer in C++ and is a participant in the C++ standardization
process. Jon is the inspiration behind and the organizer of
CppCon, now the largest annual C++ conference globally.

Jens Weller is a C++ evangelist and active member of the C++
community worldwide. He’s also the founder and organizer of
what has now become the Meeting C++ platform in Europe.

KDAB — the Qt, OpenGL and C++ experts 12

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for
architecture, development and design of Qt, C++ and OpenGL
applications across desktop, embedded and mobile platforms.
KDAB is the biggest independent contributor to Qt and is the
world’s first ISO 9001 certified Qt consulting and development
company. Our experts build run-times, mix native and web
technologies, solve hardware stack performance issues and
porting problems for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive experience in
creating, debugging, profiling and porting complex applications
help developers worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide market leading,
hands-on, training for Qt, OpenGL and modern C++ in multiple
languages.

www.kdab.com

© 2020 the KDAB Group. KDAB is a registered trademark of the
KDAB Group. All other trademarks belong to their respective
owners.

