Graphics

Nine Steps to Vulkan Literacy

Dr Sean Harmer
Managing Director — UK
The KDAB Group

February 2016




KDAB — the Qt, OpenGL and C++ experts

Vulkan 1.0 was released on February 16™
and provides a variety of advantages over
other APIs. Here’s a quick-start primer on
what you need to know.

“The coexistence
of Vulkan and
OpenGL+ES is

one of our
design goals”

The Khronos Group

Nine Steps to Vulkan Literacy

Vulkan (spelled with a “k”, not a “c”) is a powerful new 3D graphics API from the
Khronos Group, the same consortium that developed its spiritual predecessor,
OpenGL and other related standards.

Like OpenGL, Vulkan targets high-performance real-time 3D graphics
applications such as games and interactive media, but offers higher performance
and lower CPU usage, much like Direct3D 12 and Metal. Released on February

16" 2016, it provides a variety of advantages over these other APIs.

If you’re not yet fully up to speed on Vulkan, read on for a quick-start primer on
the nine things you need to know about this shiny new API.

1. Vulkan won’t replace OpenGL or OpenGL ES overnight

True, Vulkan is the heir apparent to OpenGL. And it will most likely replace
OpenGL and OpenGL ES at some point in the future. But if you’re a programmer
relying on OpenGL+ES (OpenGL and OpenGL ES), don’t panic!

There are several reasons to stay calm and code on. First of all, Vulkan requires
hardware that can support OpenGL 4.5 and up, or OpenGL ES 3.1 and up; the
existing OpenGL+ES APIs are still required for older hardware. Secondly, Vulkan
is a more explicit APl while OpenGL+ES is a bit more hands-on (with the driver
taking care of much of the memory management) and is an easier place for
programmers to start. Thirdly, OpenGL+ES is currently enabling billions of
devices so there are business reasons that the Khronos Group will not just
maintain these APIs but evolve them as well. Finally, and most importantly, the
Khronos Group clearly states that the coexistence of Vulkan and OpenGL+ES is
one of its design goals. Vulkan is modularly designed such that an OpenGL+ES
API can potentially be layered on top of a bare Vulkan API, a win/win strategy
for compatibility.



KDAB — the Qt, OpenGL and C++ experts

Vulkan removes the distinction between
mobile and desktop. It is a single API that
works on all platforms—desktop, mobile,
console and embedded.

Vulkan enables
milliwatt
rendering,
opening up rich
graphics for
loT and
wearables

2. Vulkan closes the gap between mobile and desktop

If you’ve done any OpenGL ES programming for mobiles, you know it is
mostly a subset of OpenGL (even though there are some oddities like
texture-format support that break the strict subset nature). In some cases,
you probably had to really thrift down on the APIs you used, and if you
ported over existing OpenGL code, you may have had a rude awakening.
Indeed, removal of some of the OpenGL niceties means that heavy lifting is
necessary to convert structures or program flows over to being ES
compliant.

Thankfully, Vulkan removes the distinction between mobile and desktop. It
is a single APl that works on all platforms—desktop, mobile, console and
embedded—yet still allows hardware vendors to expose additional
functionality where available. This extensibility has been, and continues to
be, a crucial aspect of OpenGL and Vulkan continues this ethos.

3. Vulkan is a complete API rewrite with no OpenGL legacy

Older APIs tend to gather a lot of cruft when new methodologies come into
vogue or new hardware capabilities become available. To maintain
backward compatibility and to coexist with legacy APls, they can be
subjected to lots of awkward, kludgy changes. That makes long-standing
APIs that much more difficult to deal with and reduces the performance of
your underlying product.

For Vulkan, the Khronos Group decided to completely scrap the old
OpenGL+ES APIs in favor of a clean-slate approach. Vulkan started life from
AMD'’s generous contribution of the Mantle API, which was modified to be
fully open standard and multi-party approved. While this approach does
mean breaking backward compatibility, it also ensures this new API will be
clean and optimal.

4. Vulkan gives “bare to the metal” performance

OpenGL is great for cross-platform work because you can run OpenGL
programs on Windows, Linux/Unix and OSX and across mobile platforms if
you also consider OpenGL ES. However, OpenGL, like Direct3D 11 and



KDAB — the Qt, OpenGL and C++ experts 4

Vulkan stays out of the way whenever
possible, allowing you to talk to the GPU on
its own terms. This has several distinct
benefits.

earlier, are limited by how much work the CPU has to do in order to feed
data and commands to the GPU. What’s more, this work could only be
issued from a single thread in the user application.

. . Vulkan fixes all of that. It stays out of the way whenever possible, allowing
I n p I'EI I | I l I n a I'y you to talk to the GPU on its own terms. That frees up the CPU from doing

work based upon complicated heuristics in the driver and puts that
tests A R M s responsibility in the hands of the application developer. This makes much
I more sense as only the application developer has the high-level knowledge
V I k d = of what the application needs. This makes the Vulkan drivers much simpler
U a n rlve r than their OpenGL counterparts. The need for the application developer to
handle more of the work is what makes people think of Vulkan (and

Ove rh ea d Wa S Direct3D 12/Metal) as lower level. These APIs are not really lower level, just

more explicit. The upshot of this is that with full control the application

On Iy 20% Of thei r developer can get much more predictable performance. A set of

middleware utilities will likely emerge to make Vulkan adoption easier.

O pe N G L E S Jesse Barker of ARM showed very preliminary results that their Vulkan

driver overhead was already only 20% that of their OpenGL ES driver. This is

u partly because of the above-mentioned reduction in CPU load and partly

d rlver because Vulkan allows prepared command buffers to be reused multiple
times, either within a frame or across frames. With OpenGL, a draw call
such as glDrawElements(), prepares the command in the driver and queues
it for execution. As such there is no scope for reuse of the internal GPU
command. Preparing the command is the expensive part of the operation
and so repeated OpenGL draw calls soon add up. Vulkan makes the
preparation of commands and their submission two distinct steps. Vulkan
allows the user to store prepared commands in a command buffer that can
be submitted multiple times. Furthermore, Vulkan allows for two levels of
command buffers where secondary buffers can be referenced by primary
ones. This comes in useful when you need to draw the same geometry
multiple times—for example in a shadow map pass followed by a main
lighting pass.

OpenGL programs that are now CPU bound will run significantly faster even
if still using just a single CPU core. More advanced threading models (see
below) will further improve this. Reducing the CPU load directly translates
into bigger thermal headroom and longer battery life on mobile devices.



KDAB — the Qt, OpenGL and C++ experts

Vulkan puts the power of multi threading

back in your hands, especially important if
you’re trying to squeeze performance out
of multiple cores.

whcmdPipelincearierreduffor
shCmaDboMarErdicydBalter - 0 b ou2 165

Prototype Vulkan debugger
from Valve and LunarG

5. Vulkan is very multi-threading friendly

Another major change for Vulkan is its threading model. OpenGL+ES only
allowed API calls from one thread—the thread on which the OpenGL context
was current. That limitation ensured the driver wouldn’t mangle structures
accessed from multiple threads but it was a rather harsh fix, putting a big
constraint on how you could feed commands and data to the GPU.

Vulkan puts the power of multi threading back in the programmer’s hands,
especially important if you’re trying to squeeze performance out of multiple
cores. Vulkan allows you to create render commands on any thread and
provides some support for making memory allocations efficient across
multiple threads (pooled allocators). Submission of prepared command
buffers can also be done from any thread but you are responsible for
ensuring correct ordering. However, with submissions being so inexpensive,
it may well be beneficial to build command buffers across many threads and

then use a single thread for submission.

It goes without saying that with power comes responsibility—now you’re the
one who has to ensure you don’t step on yourself across threads. Once

again, the anticipated middleware layers are expected to help here.

6. Vulkan makes error checking optional

APIs that check parameters for errors are both a blessing and a curse. While
they’re invaluable in getting your program off the ground and signaling any
problems in program flow, that error checking imposes a significant penalty
for every call. As you’re probably aware, OpenGL+ES follows the error-
checking model: safer to use when getting your program working but it

comes at a cost.

Vulkan by default has no error checking. You want direct-access
performance? You got it! No error checking will get in between you and the
GPU. Of course, that’s a bit scary and a recipe for shooting off your foot.
Thankfully, Vulkan is a modular, layered API stack. You can add an error-
checking module to your initial development phase for safety and strip it out
during your release build for performance. Other layers such as reference
counting of objects, profiling and validation should soon become available.



KDAB — the Qt, OpenGL and C++ experts

Vulkan changes the game by using an
intermediate representation for shader
execution, SPIR-V— probably its most
understated feature.

Imagination PowerVR Vulkan
prototype achieves 11.5 times
faster framerate than
OpenGL ES on Gnome Horde
demo

7. Vulkan will have wide (but not universal) platform support

As far as choice of APl goes nearly everybody will be supporting Vulkan,
including Windows 7/8/10, Linux, Android and SteamOS. Silicon support is
practically universal; AMD, ARM, Broadcom, Imagination, Intel, NVIDIA,
Qualcomm, Samsung and Vivante are all building Vulkan support into future
products. And gaming companies like Unity, Oxide, Blizzard, Epic, EA and
Valve are all porting their engines.

Right now Apple is still a holdout, supporting their own proprietary Metal
for OSX/iOS. It’s unlikely that OSX or iOS drivers can be written for Vulkan
without Apple’s support, although Vulkan+Metal coexistence should
technically be possible. Let’s hope the folks in Cupertino see the value of
opening up the walled garden with official Vulkan support in the future,

which would make all of our lives easier.

8. Vulkan redesigns shaders

In the OpenGL+ES world, GLSL is the only official shader language. That
means three things. One, your drivers will need a relatively sophisticated
GLSL compiler. Two, you will have to ship unvarnished shader source code
with your app. And three, you have a single option for shader control. None
of these are really deal-breakers but they aren’t optimal either. Vulkan
changes the game by using an intermediate representation for shader
execution, SPIR-V. Similar to byte code, SPIR-V is neither a human-readable
language nor a GPU directly executable one, but somewhere in-between.

What does SPIR-V get us for Vulkan? Without needing a full-featured
compiler, your drivers become a lot less complicated and more consistent,
and you won’t need to expose your shader source. Most importantly, you
won’t need to constrain the shader language to GLSL. While GLSL to SPIR-V
compilers will be made available, SPIR-V opens up the field, allowing you to
use other languages to write shaders.

Similar to OpenCL, Vulkan also supports parallel processing applications or
other GPU-utilization tools—useful in diverse fields like image processing,
machine learning and physical simulations. It supports parallel processing by
providing both graphics and compute queues to which command buffers



KDAB — the Qt, OpenGL and C++ experts 7

Vulkan specifically supports modern GPU
architectures, making it a significantly
easier task for developers to create Vulkan
device drivers.

can be submitted. This opens up the possibilities for other queue types in the
future. Who knows, perhaps one day we will have a ray-tracing queue,
allowing Vulkan to mix compute, rasterized content and ray-traced graphics.

The change from GLSL to SPIR-V is probably the most understated

A\ Y k
It tOO two component that Vulkan brings and one where | predict we’ll see some of the

most exciting developments.

developers just

9. Vulkan makes writing a driver fundamentally easier
two months to

Vulkan is created to specifically support modern GPU architectures and
create a doesn’t need significant translation to use a GPU’s resources. That means it’s

a significantly easier task to create Vulkan device drivers. By way of example,
Rys Sommefeldt from Imagination said that it took two developers just two

p re I I m I n a ry months to create their preliminary Vulkan driver.

- " Why should the rest of us care? Because there are very few graphical device
VU I ka n d I'IVE I' driver authors out there. The easier it is to build new drivers on new
hardware, the sooner the rest of us can get our hands on those devices, and
the less complicated and buggy those drivers will be. And with an APl more

Imaglnatlon in-line with GPU capabilities, we’re going to get even better performance.

That’s Vulkan in a nutshell. Maybe the best part of all this newfound Vulkan
goodness is that work is underway to ensure that Qt will transparently
support Vulkan. If you’re using Qt, you’ll automatically get the benefit of
Vulkan when a Vulkan-ready Qt arrives. When will that be? Stay tuned...



KDAB — the Qt, OpenGL and C++ experts 8

About the KDAB Group

The KDAB Group is the world's leading software consultancy for architecture,
development and design of Qt, C++ and OpenGL applications across desktop,
embedded and mobile platforms. KDAB is the biggest independent
contributor to Qt. Our experts build run-times, mix native and web
technologies, solve hardware stack performance issues and porting problems
for hundreds of customers, many among the Fortune 500. KDAB’s tools and
extensive experience in creating, debugging, profiling and porting complex
applications help developers worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide market leading, hands-on,
training for Qt, OpenGL and modern C++ in multiple languages. Founded in
1999, KDAB has offices throughout North America and Europe.

www.kdab.com

© 2016 the KDAB Group. KDAB is a registered trademark of the KDAB Group.

All other trademarks belong to their respective owners.



