
Giuseppe D’Angelo and Ivan Čukić

The Practical
Programmer’s Guide to
C++20

KDAB — the Qt, OpenGL and C++ experts 2

C++20 provides C++ with even more power and expressiveness.

If you’re a C++ programmer, it probably won’t have escaped your
attention that the C++20 standard has been released and is sup-
ported (in great part) by the most popular compilers like GCC,
Clang, MSVC, and Apple Clang. We’re excited by this not only
because we love C++ and because many of us at KDAB are lan-
guage standards wonks, but because it provides some of the most
revolutionary changes to the language since the ground-breaking
C++11 release. C++20 provides C++ with even more power and
expressiveness, and levels the playing field between this veteran
workhorse language and newer upstarts.

However, a list of the new C++20 features often sounds like a
rules-lawyer’s minutiae. While the standard contains dozens of
improvements and fixes, we’re going to focus on the changes we
think will make the biggest differences to the everyday C++ pro-
grammer. Of course, we’ll be talking in detail about the biggest
four improvements (concepts, coroutines, modules, and ranges),
but we’ll also share a couple of smaller changes that we think are
interesting.

Concepts

Simply put, a concept specifies the template author’s expectations
for how the template should be used. In C++20, the author adds
concepts to define the valid uses of that template – that is, what
types, functions, or other characteristics are required to use the
template properly.

Let’s see what this looks like in action by using the well-worn facto-
rial, the “hello world” of functions that every programmer is prob-
ably tired of seeing written out in code. We apologize for bringing
one more version of factorial into the world, but bear with us,
because it will turn out to be handy for explaining more about
concepts in a bit.

#include <concepts>
#include <iostream>

std::integral auto factorial(std::integral auto a){
 if (a <= 0) return 1;
 else return a * factorial(a - 1);
}

int main() {
 std::cout << factorial(10) << std::endl;
 return 0;
}

Example 1: Factorial with concept

A concept
specifies the

template author’s
expectations for

how the template
should be used.

KDAB — the Qt, OpenGL and C++ experts 3

Concepts turn a simple function into a generic one.

As you can see, this is not too different than a plain-old factorial
function, although we use std::integral instead of an integer type.
std::integral is a concept, and it tells the compiler that as long as
the parameter conforms to a standard integer type (like any of the
built-in 8-, 16-, 32-, or 64-bit signed or unsigned types), go ahead
and accept this invocation of the function template as valid. In
turn, since we use a concept-enforced std::integral auto as the
return type, it ensures our return type will also be an integer class.

Concepts turn our simple function into a generic one that handles
all integral types, which makes it more flexible and reusable.
Concepts will also let us easily extend our function to other
integer or even non-integer types as we’ll soon see.

Concepts and improved errors
One big benefit of using concepts manifests itself when we start
using the template above. The compiler knows exactly what
is expected and can produce much more meaningful error
diagnostics when constraints aren’t met. For example, here’s what
happens when you try to use the function template above with
something that’s not an integer.

main.cpp: In instantiation of ‘auto [requires ::Integral<<placeholder>, >]
factorial(auto:11) [with auto:11 = double]’:
main.cpp:50:33: required from here
main.cpp:27:30: error: use of function ‘auto [requires ::Integral<<placeholder>, >]
factorial(auto:11) [with auto:11 = double]’ with unsatisfied constraints
 27 | else return a * factorial(a - 1);
 | ~~~~~~~~~^~~~~~~
main.cpp:25:15: note: declared here
 25 | Integral auto factorial(Integral auto a){
 | ^~~~~~~~~
main.cpp:25:15: note: constraints not satisfied
main.cpp: In function ‘int main()’:
main.cpp:50:33: error: use of function ‘auto [requires ::Integral<<placeholder>, >]
factorial(auto:11) [with auto:11 = double]’ with unsatisfied constraints
 50 | std::cout << factorial(-10.5) << std::endl;
 | ^
main.cpp:25:15: note: declared here
 25 | Integral auto factorial(Integral auto a){
 | ^~~~~~~~~
main.cpp:25:15: note: constraints not satisfied
main.cpp: In instantiation of ‘auto [requires ::Integral<<placeholder>, >]
factorial(auto:11) [with auto:11 = double]’:
main.cpp:50:33: required from here
main.cpp:8:9: required for the satisfaction of ‘Integral<auto:11>’ [with auto:11 =
double]
main.cpp:9:26: note: the expression ‘std::is_integral<_Tp>::value [with _Tp = double]’
evaluated to ‘false’
 9 | std::is_integral<T>::value;
 | ^~~~~

Example 2: Concept-simplified error reporting

Egads, that’s a lot of compiler output to wade through. We’ve
highlighted the key parts that let us know what’s going on, but it’s
not too difficult to spot the problem. We failed constraints based
on the Integral concept and that’s because the class we tried to
use didn’t conform to std::integral.

The compiler
knows exactly what

is expected and
can produce much

more meaningful
error diagnostics
when constraints

aren’t met.

KDAB — the Qt, OpenGL and C++ experts 4

Without concepts, the compiler can’t generate a human understandable error

by the time a problem is encountered deep down in a template’s guts.

Without concepts, the compiler can’t generate a human
understandable error by the time a problem is encountered deep
down in a template’s guts. In an equivalent version of this example
without concepts, the compiler spits out 172 lines of complaints
for a similar one-line error. Those messages say nearly nothing
about the true nature of the issue or where it was encountered
by the programmer – they’re mostly about template argument
deduction or substitution failures and mismatched non-derivative
iterators that are template-mangled beyond recognition. You
can eventually work your way back to the root cause of all these
errors, but it’s far less obvious what the issue is, and it takes
substantially more time to spot the issue.

By cleaning out much of the compiler error clutter and focusing
on the root problem, concepts can make using templates for
everyday programming less intimidating.

Concept overloads
What if we want to extend our ubiquitous factorial to handle
real and complex numbers? That’s easy too. Concepts are great
at creating different overloaded behaviors. We can have one
version for integral types while we have other versions for non-
integral types that will avoid writing a lot of duplicated boilerplate
that would otherwise be required. This is the next big benefit of
concepts, since overloading of generics can be specified in a clean
and declarative way, rather than relying on non-obvious compiler
behaviors like SFINAE.

#include <iostream>
#include <complex>
#include <concepts>
using namespace std::complex_literals;

// while waiting for P2078 to add the is_complex type
trait,
// we implement a makeshift version...
template<typename T>
concept Complex = requires(T a, T b) {
 { a.imag() };
 { a.real() };
 { a + b } -> std::convertible_to<T>;
};

template<typename T>
concept Continuous = Complex<T> || std::floating_point<T>;

std::integral auto factorial(std::integral auto a){
 if (a <= 0) return 1;
 else return a * factorial(a - 1);
}

Concepts can make
using templates

for everyday
programming less

intimidating.

KDAB — the Qt, OpenGL and C++ experts 5

Overloading of generics can be specified in a clean and declara-

tive way, rather than relying on non-obvious compiler behaviors

std::floating_point auto factorial(std::floating_point auto
a){
 decltype(a) one = 1.0;
 return std::tgamma(a + one);
}

Complex auto complexGamma(Complex auto a){
 auto z = 0.0 + 0i;
 // A whole mess of complex math here...
 // (for one example, see https://www.johndcook.com/
blog/cpp_gamma/)
 return z;
}

Complex auto factorial(Complex auto a){
 decltype(a) one = 1.0;
 return complexGamma(a + one);
}

int main() {
 using namespace std::complex_literals;
 std::cout << factorial(10) << std::endl;
 std::cout << factorial(-10.5) << std::endl;
 std::cout << factorial(10.0 + 2i) << std::endl;
 return 0;
}

Example 3: Generic factorial with concepts

We’ve introduced the requires keyword to enforce the constraints
our complex concept needs, specifically what function signatures
your generic code depends on. In this case, we require that
any class calling itself complex must support real(), imag(), and
addition. Clearly, moving this from an illustrative example to
functional code might require a lot more constraints in our
requires clause. We’ve also created a Continuous concept in the
code above that, although not used in this example, shows how
concepts can be simply composed of other concepts with Boolean
operators.

Concept specialization
Multiple concepts for the same type are handled by the compiler
in a process called partial ordering of constraints. Fundamentally,
this means that if more than one constraint matches a function,
template, overload, or argument, the compiler preferentially
chooses one that is more specialized before one that is less
specialized. This is a formalized way to specify to the compiler the
behavior that a programmer might intuitively expect.

If more than
one constraint

matches a function,
template, overload,

or argument, the
compiler chooses
one that is more

specialized..

KDAB — the Qt, OpenGL and C++ experts 6

The “tighter” the concept is defined, the higher it will be priori-

tized.

A quick illustration shows how this works.

using namespace std::complex_literals;

// Definition #1 – handles floating types only
void f(std::floating_point auto x);

// Definition #2 – handles floats and complex numbers
void f(Continuous auto x);

int main() {
 f(3.14f); // Case A:
compiler calls f #1
 f(0.707 – 0.707i); // Case B:
compiler calls f #2
 return 0;
}

Example 4: Concept specialization

The “tighter” the concept is defined, the higher it will be prioritized
when the compiler has more than one competing option that
matches. So, any type matching the std::floating_point concept
(like 3.14f in case A, as well as any other float or double) will match
both definitions of function f. However, because definition #1 is
more specialized – technically speaking, f #1 is subsumed by f #2
– the compiler will use definition #1 for floating point numbers. In
case B, the only concept that applies to complex numbers is our
custom Continuous concept, so the compiler chooses function
definition #2.

Concepts make templates easier
Concepts allow you to create compile-time pseudo-duck typing
that expresses the template author’s intent up front during
function invocation, rather than relying on compiler trickery
or waiting until problems are encountered during template
instantiation. We feel this clear and readable communication
helps brings some of the promise and power of generic template
techniques out of the hands of library authors and into the hands
of everyday programmers.

Ranges

Next on the C++20 hit parade are ranges, which can be thought
of as “Unix pipes brought to C++”. Because they don’t require
loops and because range views are generally value-based (non-
mutating), there’s less room for error – no off-by-one errors
or memory allocation issues. Ranges bring a bit of the bliss of
functional programming to C++. Let’s see them in action.

Concepts bring the
promise and power

out of the hands
of library authors

and into the
hands of everyday

programmers.

KDAB — the Qt, OpenGL and C++ experts 7

Range views don’t have off-by-one errors or memory allocation

issues.

#include <ranges>
#include <iostream>

int main()
{
 auto ints = std::ranges::iota_view{1, 33};
 // Half-closed range,
32 is last

 auto even_bytes = [](int i) { return (i % 8)==0; };
 // Keep only the byte
boundaries

 auto largest_value = [](int i) { return (1ULL<<i)-1;
};
 // Biggest expressible
unsigned

 for (uint64_t i : ints |
 std::views::filter(even_bytes) |
 std::views::transform(largest_
value)) {
 std::cout << i << ‘ ‘;
 }

 std::cout << std::endl;
}

Example 5: Range example source

The output of this program is a list of the biggest unsigned values
that can fit in a value that’s from one to four bytes long.

255 65535 16777215 4294967295

Example 6: Range example output

Admittedly, there are countless better ways to do this contrived
example. However, it allows us to quickly show how easy it is
to construct a function by composing several lightweight range
operations.

As one example, the iota_view function doesn’t generate an
array; its iterator generates as many numbers as you need and
only when they’re needed. (Ranges don’t have to be lazy, but the
great part is they can be.) This laziness allows ranges to address
situations where the entire problem set can’t be loaded into
memory at once or when you’re dealing with generators of infinite
(or nearly infinite) length.

Because ranges are lightweight – much of their magic is handled

Ranges don’t have
to be lazy, but the
great part is they

can be.

KDAB — the Qt, OpenGL and C++ experts 8

Ranges don’t impose the big memory allocation burdens or run-time

costs you might expect from a functional programming paradigm.

by the compiler at compile-time – they aren’t imposing big
memory allocation burdens or run-time costs that you might
anticipate from a functional programming paradigm.

The power of ranges
Great, but can we use ranges to solve real-life problems? Sure! A
classic example is counting document word frequencies, inspired
by the infamous battle of titans Donald Knuth and Doug McIlroy.
In the original 1986 Programming Pearls column published by
the ACM, Knuth’s 10 pages of procedural Pascal was replaced by
McIlroy using a six-line Unix script. The big advantage in simplicity
comes from conceptualizing the problem as a series of functions
pipelined together.

We can do much the same with C++ ranges, by building our
text word counter through a composition of several simpler,
pre-existing functions. Our C++ range variant is nice and tight.
The pipe syntax of ranges is also very familiar to anyone who’s
ever used Unix or Linux, making it clear to read even for the
uninitiated.

#include <iostream>
#include <vector>

#include <range/v3/view.hpp>
#include <range/v3/action.hpp>
#include <range/v3/view/istream.hpp>
#include <range/v3/range/conversion.hpp>

using namespace ranges;

auto string_to_lower(const std::string &s) {
 return s | views::transform(tolower) |
to<std::string>;
}

auto string_only_alnum(const std::string &s) {
 return s | views::filter(isalnum) | to<std::string>;
}

bool string_is_empty(const std::string &s) {
 return s.empty();
}

int main(int argc, char *argv[])
{
 const int n = argc <= 1
 ? 10
 : atoi(argv[1]);

 const auto words =
 istream_range<std::string>(std::cin)
 | views::transform(string_to_lower)

We build our text
word counter

through a
composition of

several simpler,
pre-existing

functions.

KDAB — the Qt, OpenGL and C++ experts 9

 | views::transform(string_only_alnum)
 | views::remove_if(string_is_empty)
 | to_vector | actions::sort;

 const auto frequency = words
 | views::group_by(std::equal_to{})
 | views::transform([] (const auto &group) {
 const auto size =
distance(group);
 const std::string word =
*cbegin(group);
 return std::pair{size, word};
 })
 | to_vector | actions::sort;

 for (auto [count, word]: frequency | views::reverse
 | views::take(n)
) {
 std::cout << count << “ “ << word << ‘\n’;
 }

 return 0;
}

Example 7: Using ranges to build an index

Wow – powerful stuff. Another good example that might pique
your interest is a CppCon presentation where Eric Niebler
shows how he uses ranges to build a calendar app with simple,
understandable, bug-free, and highly reusable code.

Realizing ranges
Unfortunately, there’s a catch, and that is, the code above won’t
run with out-of-the-box C++20 alone. The code here is using
Eric’s implementation of ranges that unfortunately, to prevent
delaying the standard, was only partially adopted by the standards
committee. While ranges in their fullest expression are extremely
powerful, the C++20 version is lacking some key capabilities like
group_by, zip, concatenate, enumerate, and lots more that you’d
need for many pretty common uses.

The good news is that you can experiment around with the ranges
that C++20 does provide today. If you get hooked and want a
bit more power, you can download working and tested range-v3
code while you’re waiting for more range expressiveness to make
its way into the standard. Hopefully by C++23, a much more
comprehensive set of range functionality should be able to clear
the standards committee.

Unfortunately,
there’s a catch, and

that is, the code
above won’t run

with out-of-the-box
C++20 alone.

KDAB — the Qt, OpenGL and C++ experts 10

Modules make it simple to reuse code – add an import statement

and you’re done.

Modules

We next look at modules. There’s not a lot to say here, other
than it’s about time. C++ has its reusability model based around
header files, while other programming languages have slightly
cleaner ways of reusing code. Modules add the simplicity of reuse
that Python, Go, Java, or C# users enjoy – simply add an import
statement and you’re done.

// Note: the standard library isn’t yet module-ready in
C++20,
// so this example won’t compile. If it was, it might look
like this:

import <iostream>;

int main()
{
 std::cout << “Hello module world!\n”;
}

Example 8: Importing a module

What’s the big deal – isn’t this the same as #include? Kind of, but
better.

An increasing proportion of code is located within headers, driven
by the popularity of template-based libraries like Boost, Eigen, and
Asio, by the total number of external components being used, and
by the demand for internal application reuse. Forcing the compiler
to lexically insert an entire universe of header files into the
source only serves to bring compile times to a crawl. Precompiled
headers help some, but only when used carefully. They don’t really
solve the problem; they only attempt to work around it.

Is it easy to create a module using C++20 syntax? Absolutely trivial.

// simplelib.cpp

export module simple.example;
 // dots can be optionally inserted for module
name readability

export void foo(){} // foo() is accessible by outside
world
void bar(){} // bar() is only visible within
this file

Example 9: Exporting a module

An increasing
proportion of code

is located within
headers, driven by

template-based
libraries, external
components, and

internal application
reuse.

KDAB — the Qt, OpenGL and C++ expers

KDAB — the Qt, OpenGL and C++ experts 11

Modules are embraced by modern C++ paradigms: no file guard hacks

needed, fewer dependency issues, and faster compilation times.

What modules bring
Modules are a cleaner and more capable solution to the header
file that are embraced by modern C++ paradigms: no file guard
hacks needed, fewer dependency issues, and faster compilation
times. Modules also promise effective shielding of private
functions, more consistent initialization order guarantees, and
better global optimization. There’s quite a bit more to C++20
modules than we’ve explored here – interface, implementation,
header units, global and private module fragments – here’s a nice
and concise summary.

What modules miss
Unfortunately, there are two downsides to modules. The first is
the chicken-and-egg problem: until C++20 gets more widespread
adoption and people start using modules, there will be little
incentive for library authors to provide them. And without
common libraries using modules ... you see the problem. This
is compounded by the other big issue (at least of this writing),
which is compiler support. None of the top compilers fully
support modules per the C++20 specification just yet. (And as
the comment in our example points out, at the current time, the
standard doesn’t even fully embrace modules in the standard
library.)

We’ll also likely need a diversity of C++ programmers in the
community stressing modules in real-world applications before all
of the kinks get worked out. Headers have well-known capabilities
(and quirks) as well as decades of backwards compatibility that
will keep them a part of everyday C++ usage for the foreseeable
future. But it’s nice to look forward to the cleanliness of modules,
even if it’s only within your own internal projects for the near-
term.

Coroutines

The last big thing that C++20 brings to the party is coroutines.
Have you ever done any of the following?

 • Constructed your own event-driven framework
 • Created lazy generating classes
 • Interleaved several timing-dependent functions within a single-

 threaded design
 • Written tokenizers and parsers that read their data

 asynchronously

Modules promise
effective shielding

of private functions,
more consistent

initialization order
guarantees, and

better global
optimization.

KDAB — the Qt, OpenGL and C++ experts 12

Coroutines solve a nightmarish mess of function pointers, call-

back routines, and state management.

In all these cases – and many more – coroutines come to the
rescue.

Coroutines solve the nightmarish mess of function pointers,
callback routines, and state management that can result from
solving these sorts of problems. Any situation that you might
normally have to solve with callbacks are a natural fit for
coroutines. So is anything with asynchronous I/O or functions that
maintain lots of internal state management.

What does this look like in code?

generator<int> iota(int n = 0) {
 while(true)
 co_yield n++;
}

Example 10: Using coroutines to implement the iota generator

A lazy iota generator is a great example of the power of
coroutines since it can be implemented almost trivially. iota is a
function that generates an endless number of sequential integers,
and the implementation is just about as simple as you could
imagine. Sit in a while-forever loop, and continually spit out bigger
numbers. The compiler takes care of return and reentry, state
management, and function pointer manipulation. Sure, you could
do this in regular old C++ too, but it’d be far messier, uglier, and
error prone.

What about an asynchronous I/O example?

task<> tcp_echo_server() {
 char data[1024];
 for (;;) {
 size_t n = co_await socket.async_read_
some(buffer(data));
 co_await async_write(socket, buffer(data, n));
 }
}

Example 11: Echo server with coroutines

Again, clean and simple.

Any situation that
you might normally
solve with callbacks
are a natural fit for

coroutines.

KDAB — the Qt, OpenGL and C++ experts 13

C++20 coroutines shouldn’t be thought of as a multi-threading

replacement.

Coroutines aren’t threads
Although C++20 coroutines allow the interruption of long-running
functions, they shouldn’t be thought of as a multi-threading
replacement. They aren’t at all. Rather, they are somewhat like
non-preemptive multitasking – they require full cooperation on
behalf of the entire program they’re in to operate properly. But as
this example shows, there can be a bit of overlap between the two
concepts.

If our echo server example were any more complex, you might be
able to justify using multi-threaded code. In this case though, the
cooperatively threaded model provided by coroutines does the
trick. It’s “nearly multi-threaded” without having to worry about
spinning up threads, adding locks or synchronization primitives,
or figuring out how to cleanly tear down the thread. And that’s
the case for an awful lot of event-driven things in our programs.
Multithreading takes far more work to “do it right” to justify using
it in every case. Coroutines can make it easy to introduce a level
of simple “parallel” execution without worrying about callbacks or
state machines. Just remember it’s not intended to replace real
multi-threading and don’t get carried away.

Coroutine with care
Even though you don’t need special locks or access controls,
coroutines do introduce a few restrictions. You’re not allowed to
have varadic arguments, plain return statements, or placeholder
return types (like auto or Concepts). You also can’t have constexpr,
constructors, destructors, or the program’s main() function be
coroutines. All-in-all though, this is a pretty short list of exclusions
that we can definitely live with.

If there’s any drawbacks to the new coroutines, it’s only that
they’re not better supported in the C++ libraries. The required
necessities are there in the language in the form of co_await,
co_yield, and co_return, and they’re very usable in that form if
you want to roll-your-own code. However, it’s a bit disappointing
that there aren’t as many building blocks or library types available
to help roll them out properly. Similarly to ranges, we expect this
situation to improve as some community proposed features get
rolled into standard libraries for C++23. If you want a preview
of the power of coroutines being expressed to its fullest in the
meantime, you might want to check out the CppCoro library.

Coroutines can
make it easy to

introduce a level
of simple “parallel”
execution without

worrying about
callbacks or state

machines.

KDAB — the Qt, OpenGL and C++ experts 14

std::format gives us safe string formatting that complements the

existing C++ methods of string output.

Anything else?

We’ve talked about the biggest four changes in C++20, but there
are two other smaller yet still impactful changes that are worth
pointing out.

std::format
The C++ community has two options for creating formatted
strings: the archaic past of printf/sprintf strings that are both
cryptic and ultra-dangerous, or modern stream operators that
are terrible for localization. Thankfully, C++20 has adopted Victor
Zverovich’s fmt library in the form of std::format, which solves
both of these issues. This is because std::format gives us safe
string formatting that complements the existing C++ methods of
string output.

By using placeholder-based formatting and keeping the value
formatting options within the (more easily localized) format string,
std::format is i18n-approved and simple to use. Be jealous of
Python string formatting no more.

std::cout << std::format(“{1}, {0}!\n”, “world”, “hello”);
std::cout << std::format(“he{0}{0}o, {1}!\n”, “l”,
“world”);

Example 12: Two ways to generate “hello world!” with positional args

Three-way comparison operator
One last nicety is the three-way comparison or <=> operator,
otherwise known as the “spaceship” operator for its rough
resemblance to a space invaders sprite. This operator does
for any type what good old strcmp has done for decades:
communicates less than (negative value), equals (zero), and
greater than (positive value) status in a single call.

What’s the big deal? The great part about spaceship is that it
makes writing your own operators much easier. It’s a bit of a pain
to supply all six comparison operators for your own classes (<,
<=, ==, >, >=, !=). That becomes especially true if you provide
comparisons from your class to other built-in or library classes
(and vice versa), when the number of comparison operators can
explode. Thankfully, now you just need to write one spaceship
operator for your class, and one spaceship for each comparison
type. That’s it – two trivial operators instead of 18 for the below
example.

Be jealous of
Python string
formatting no

more.

KDAB — the Qt, OpenGL and C++ experts 15

Spaceship makes writing your own operators much easier.

#include <compare>
#include <iostream>

class ExValue {
 public:
 constexpr explicit ExValue(int val): value{val} { }
 auto operator<=>(const ExValue& rhs) const = default;
 constexpr auto operator<=>(const int& rhs) const {
 return value - rhs;
 }
private:
 int value;
};

template<typename A, typename B>
const auto whatis(A a, B b) {
 auto comparison = (a <=> b);
 if (comparison < 0)
 return “less”;
 else if (comparison > 0)
 return “greater”;
 else
 return “equals”;
}

int main() {
 std::cout << whatis(ExValue(10), ExValue(12)) << std::endl;
 std::cout << whatis(ExValue(12), ExValue(10)) << std::endl;
 std::cout << whatis(ExValue(8), ExValue(8)) << std::endl;
 std::cout << whatis(10, ExValue(12)) << std::endl;
 std::cout << whatis(100, ExValue(50)) << std::endl;
 std::cout << whatis(ExValue(10), 40) << std::endl;
 std::cout << whatis(ExValue(40), 10) << std::endl;

 std::cout << (bool) (ExValue(10) < ExValue(15)) << std::endl;
 std::cout << (bool) (ExValue(10) > ExValue(15)) << std::endl;
 std::cout << (bool) (ExValue(10) <= ExValue(15)) << std::endl;
 std::cout << (bool) (ExValue(10) >= ExValue(15)) << std::endl;
 std::cout << (bool) (ExValue(10) == ExValue(15)) << std::endl;
 std::cout << (bool) (ExValue(10) != ExValue(15)) << std::endl;
}

Example 13: Simplification provided by spaceship

We’ve even made it more complicated than it absolutely needs to
be when comparing our class against int by using a subtraction.
We could have easily used <=> here instead, which would read
more clearly. However, we’ve used subtraction as a bit of a
reminder that underneath the implementation of spaceship, the
logic can often simply boil down to a trivial and natural operation.

KDAB — the Qt, OpenGL and C++ experts 16

default allows the compiler to synthesize a comparison in many

simple cases.

Also note that we didn’t even have to write our type’s spaceship
function – using default allows the compiler to synthesize one
in many simple cases. We get all 18 operators for “free” because
the compiler now converts all comparison operations into
spaceship automatically. When the compiler sees A < B, it silently
interprets that as (A <=> B) < 0, and similarly transforms any other
comparison operator.

Spaceship provides more flexibility behind comparisons too. It
has different ordering categories like strongly ordered, weakly
ordered, or partially ordered. These allow you to sort, filter, or
partition based on comparisons where objects may be equal
but not equivalent or to introduce special values like NaN or
Infinity that can fail any comparison. (In fact, these special
orderings are why we don’t just print out the results of <=>
directly in the code above – it doesn’t just return a simple int.)
But it’s the simplification of user-created types that is the biggest
change added by the three-way comparison operator that most
programmers will directly notice.

Summary

The new standard has many changes that will mostly be of inter-
est to library builders and language experts, things like consteval,
constinit, no_unique_address, lambda function improvements,
and others. These all help to improve the foundation of the lan-
guage, make code more efficient or easier to write, close gaps in
the standard, or lay groundwork for upcoming changes in C++23.
But the six additions that we talk about in this whitepaper are the
ones we think will make the biggest difference in the lives of prac-
tical programmers.

Three-way
comparison

results in two
trivial operators

instead of 18 in our
example.

KDAB — the Qt, OpenGL and C++ experts 17

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for
architecture, development and design of Qt, C++ and OpenGL
applications across desktop, embedded and mobile platforms.
KDAB is the biggest independent contributor to Qt and is the
world’s first ISO 9001 certified Qt consulting and development
company. Our experts build run-times, mix native and web
technologies, solve hardware stack performance issues and
porting problems for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive experience in
creating, debugging, profiling and porting complex applications
help developers worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide market leading,
hands-on, training for Qt, OpenGL and modern C++ in multiple
languages.

www.kdab.com

© 2020 the KDAB Group. KDAB is a registered trademark of the
KDAB Group. All other trademarks belong to their respective
owners.

