
F unctional safety and HMI
Why should you care?

2 3KDAB | Trusted Software Excellence

Background
You’re a developer of front-end applications.
You’ve done the courses, watched the videos,
practiced the techniques. You’re all over the Qt
beta releases and up to speed with them by the
release date. In short, you’re on top of your game.

HMI development is a specialism that is in dem
and. Being up to speed with the latest thinking
takes all of your energy. The back-end stuff is
someone else’s problem, isn’t it? It doesn’t really
matter to you what happens downstream. Right?

Well, yes. And no.

Take functional safety, for example. GUIs developed
to operate industrial plant, medical devices, or air-
craft are portals to safety-critical systems with the

potential to cause harm, injury, or worse. This paper
argues that having an understanding of the implica-
tions of compliance with functional safety standards
is important, even if the necessary measures to
minimise potential harm are all handled by others.

Using this document
This document assumes no knowledge of function-
al safety, or of the standards that define how it is
to be dealt with across the sectors. If you are look-
ing to gain an understanding of functional safety
and how it impacts HMI design and implementa-
tion and have the time to read it all – that’s great!

If not – stick to the white section for an overview,
or dip into the detailed “colour coded” sections as
you please. Each offers a complete and rounded
introduction to its topic.

Contents
Background.. 2

Using this document.. 2
What is functional safety?.. 3
Functional safety and the HMI... 3
Functional safety standards.. 4
Proportionate safety measures... 4

Summary and conclusions... 5
Functional safety and the HMI.. 6

Functional safety decomposition.. 7
Functional safety decomposition and the HMI... 9

Connectivity and functional safety.. 9
Communication paths between segregated software items...11

Functional safety standards...12
IEC 61508 and its derivatives...12
Achieving functional safety..14
Policing compliance..15

Proportionate safety measures..16
Calculating the appropriate level...17
Why does it matter?..18

Works cited..19

3KDAB | Trusted Software Excellence

Functional Safety v
SOTIF
Although functional safety is a
wide-ranging discipline, it is not
quite all embracing. Functional
safety specifically excludes the
Safety Of The Intended Function
(or SOTIF).

Functional safety concerns the
response to system failure,
whereas SOTIF concerns the
mitigation of safety hazards that
might occur without a system
failure taking place. SOTIF ap-
plies to such as advanced driver
assistance systems which need
to deal with safety hazards with-
out failing themselves.

What is functional safety?
Functional safety minimizes risk in case of system malfunction
when the wellbeing of people depends on correct operation.
Although functional safety is therefore a wide-ranging concept
that is applicable across the safety-critical sectors, it includes
no provision to ensure that the primary functionality of the
application is safe (sidebar).

The International Electrotechnical Commission [1] is one of
several organizations that publish standards for electrical,
electronic, and related technologies. The safety of people and
the environment is a core underlying principle in the work they
do to underpin quality infrastructure.

The IEC definition of functional safety [2] is therefore a good
point of reference. It states that functional safety:

 / seeks to reduce the level of risk in a device or system
 / identifies potentially dangerous conditions that could 	

result in harm and automatically enables corrective
actions to avoid or reduce the impact of an incident

 / is part of the overall safety of a system or device that
depends on automatic safeguards responding to a
hazardous event

 / relies on active systems that can respond to a potentially
dangerous situation

Although the definition of functional safety largely precedes
the evolution of our connected world, this definition does
implicitly include cybersecurity issues such as the susceptibility
to bad actors (or hackers). Security vulnerabilities represent a
particular category of “potentially dangerous conditions that
could result in harm”.

Functional safety and the HMI
Capacitive HMI systems are becoming an integral part of
“safety-critical” functionality such that a malfunction could have
implications for operator and bystanders alike. For example,
cars released in recent years have seen the functionality
traditionally associated with a plethora of physical buttons inte
grated into the touchscreen HMI, lending a minimalistic and
clean look to the interior as a whole.

4 5KDAB | Trusted Software Excellence

HMI interfaces are often associated with systems that are
likely to have implications for functional safety, with potential
implications for the development overhead associated with
them. Ensuring eff ective segregation between the HMI and
the systems it controls is not only good software engineering
practice. It also has the potential to reduce the overhead of
functional safety standards compliance for HMI developers,
and to make the resulting system less vulnerable to cyber-
attack.

If you’d like to learn more about the implications of functional
safety for HMI developers and about software system
segregation in safety-critical systems, read the green section,
p. 6-11.

Functional safety standards
The primary role of functional safety standards is to defi ne
a process to be followed to ensure that functional safety is
handled to a level that is proportionate to the potential conse-
quences of failure. The diff erent standards are largely similar
in nature because the majority of them are adapted from the
“sector-agnostic” standard IEC 61508 [3] which in turn owes a
great deal to DO-178 [4] from the aviation sector. The primary
diff erence between the more sector-specifi c standards is in the
use of terminology appropriate to the sector, and in ensuring
that pre-existing best practice is retained where appropriate.

If you’d like to learn more about functional safety standards,
read the yellow section, p. 12-15.

Proportionate safety measures
How safe is safe enough? Ideally, the most thorough safety pre-
cautions would be applied by all software system developers
but that is unlikely to be commercially justifi able. Each of the
standards concerned with functional safety acknowledges this
and presents a scheme so that precautions are proportionate
for the resulting application to be “safe enough”.

This is achieved through an analysis of risk, taking into account
the likelihood of each fault condition happening, and the serious-
ness of the consequences should it do so. The application soft-
ware and subsections of it are then classifi ed according to this

5KDAB | Trusted Software Excellence

analysis, and the eff ort invested into ensuring its safety varies
according to that classifi cation. The names assigned to these
classifi cations are not consistent across the standards and they
include Safety Integrity Level (SIL), Automotive SIL (ASIL), and
Class.

If you’d like to learn more about how the standards require
functional safety measures that are proportionate to risk, read
the blue section, p. 16-19.

Summary and conclusions
Capacitive HMI systems are becoming an integral part of safety-
critical functionality across the sectors. Malfunction in such
systems could have safety implications for operators, patients,
drivers, passengers, or the general public.

Functional safety minimizes risk in case of system malfunction
when the wellbeing of people depends on correct operation. It
follows that HMI systems in the safety-critical sectors are under
increasing scrutiny from the perspective of the functional safety
standards.

Functional safety decomposition off ers an opportunity to
 minimise the overhead demanded by these standards on HMI
 development. However, decomposition also demands commu-
nication between segregated domains, and care is required to
ensure that these communications path cannot compromise the
integrity of the most critical software items. Vulnerability to such
compromise is signifi cantly increased in connected systems.

“Functional safety
minimizes risk in
case of system
malfunction when
the wellbeing of
people depends on
correct operation”

HMI interfaces impact functional safety,
requiring segregation to reduce compliance
overhead and cyber vulnerability. Functional
safety standards ensure proportional safety
measures for critical systems.

6 7KDAB | Trusted Software Excellence 6KDAB | Trusted Software Excellence

Functional safety and the HMI
Automotive systems present an obvious example of where
capacitive HMI systems are becoming an integral part of
safety-critical functionality such that a malfunction could have
implications for driver, passengers, or other road users. Most
cars released in recent years have seen the functionality tradi-
tionally associated with a plethora of physical buttons integrat-
ed into the touchscreen HMI, lending a minimalistic and clean
look to the interior as a whole.

Image 1: Functionality is being integrated into the touchscreen HMI Photo by: ün LIU

7KDAB | Trusted Software ExcellenceKDAB | Trusted Software Excellence

As discussed in the blue section, p. 16-19, the functional safety
standard IEO 26262 applies to the automotive sector. Auto-
motive HMI interfaces are unlikely to be directly involved
with the dynamic behaviour of the vehicle and so few will
be ASIL D – the most demanding level. However, there are
many examples of ASIL B or even ASIL C tasks integrated into
 capacitive HMI interfaces.

These include:
 / Engine start/stop button

 / Failure mode: Unintended touch detected for starting
the engine.

 / ABS activation/cancellation
 / Failure mode: Unintended touch to deactivate ABS.

 / Cruise control activation/cancellation
 / Failure mode: Unintended touch to activate cruise

control.
 / Driver drowsiness detection activation/cancellation

 / Failure mode: Unintended touch to deactivate driver
drowsiness detection.

These examples are specifi c to the automotive sector, but the
challenges are not limited to car development. The same migra-
tion of critical function interfaces to touch screens can be found
across the sectors including rail, medical devices, and industrial
plant. Nor are the challenges restricted to function activation
- even monitoring devices can have safety implications if data
is reported wrongly, and the operator acts upon that incorrect
information.

Functional safety decomposition
Just as safety implications of a failed railway passenger light-
ing system has fewer safety implications than a failed braking
system, it is also true that diff erent parts of an individual sys-
tem are likely to be less critical than others. Functional decom-
position is a systematic process designed to ensure that no
software component in a system is assigned a more demanding
Class, ASIL, or DAL than necessary. The yellow section, p. 12-15,
presents further information on the role of Classes, ASILs and
DALs in ensuring that functional safety related overhead is
proportionate.

Image 1: Functionality is being integrated into the touchscreen HMI Photo by: ün LIU

8 9KDAB | Trusted Software Excellence

IEC 62304, for example, defi nes three classes for medical
 devices as follows:

“Class A
The software system cannot contribute to a hazardous situation
or the software system can contribute to a hazardous situation
which does not result in unacceptable risk after consideration of
risk control measures external to the software system.

Class B
The software system can contribute to a hazardous situation
which results in unacceptable risk after consideration of risk
 control measures external to the software system but the result-
ing possible harm is non-serious injury.

Class C
The software system can contribute to a hazardous situation
which results in unacceptable risk after consideration of risk con-
trol measures external to the software system, and the resulting
possible harm is death or serious injury.”

IEC 62304 permits the segregation of a software system into
“software items”, placing as little of the system as possible into
the more critical classes. In doing so, it requires that “The soft-
ware ARCHITECTURE should promote segregation of software items
that are required for safe operation and should describe the meth-
ods used to ensure eff ective segregation of those SOFTWARE ITEMS”

Figure 1 shows the example of a Class C software system as
illustrated in the standard.

SOFTWARE SYSTEM/
SOFTWARE ITEM (CLASS C)

SOFTWARE ITEM Y
(CLASS C)

SOFTWARE ITEM Y
(CLASS C)

SOFTWARE ITEM Y
(CLASS C)

SOFTWARE ITEM X
(CLASS A)

Fi gure 1: Example of decomposition of software items
according to IEC 62304:2006 +AMD1:2015 Figure B.18

A
B
C

9KDAB | Trusted Software Excellence

The system can be segregated into one software item to deal
with functionality with fewer safety implications (software item
X), and another to handle highly safety critical aspects of the
system (software item Y).

That principle can be repeated in a hierarchical manner, such
that software item Y can itself be segregated into software
items W and Z, and so on – always on the basis that no segre-
gated software item can negatively aff ect another. Software
items such as X, W and Z that can be divided no further are
defi ned as “software units”.

Functional safety decomposition and the HMI
The ultimate goal of functional safety is to make a danger-
ous situation less severe, less probable, or more controllable.
 Naturally a user-friendly HMI has much to contribute to the
achievement of that goal.

However, from the pragmatic perspective of HMI develop-
ment, decomposition off ers the opportunity to ensure that
HMI associated code is segregated from any software re-
sponsible for proactive preventative and detective measures.
In the medical device example shown in Figure 1, this would
mean containing the HMI code within (a) software unit(s) of
the lowest possible class. The eff ective management of sys-
tem architecture and software design to this end helps to
minimize the impact of functional safety overhead on HMI
development.

There is, however, a sting in the tail of functional safety de-
composition. None of these segregated software items exists
in isolation. The more software systems are decomposed
in this way, the more communication between components
becomes necessary. That communication brings its own
challenges.

Connectivity and functional safety
It would be easy to overlook the signifi cance of the phrase
“eff ective segregation” in the IEC 62304 description of functional
safety decomposition. Eff ective segregation implies an assur-
ance that issues associated with less critical software items
(Class B, perhaps) cannot compromise those of higher critical-

SOFTWARE SYSTEM/
SOFTWARE ITEM (CLASS C)

SOFTWARE ITEM Y
(CLASS C)

SOFTWARE ITEM Y
(CLASS C)

SOFTWARE ITEM Y
(CLASS C)

SOFTWARE ITEM X
(CLASS A)

10 11KDAB | Trusted Software Excellence

ity (Class C). If segregation is fl awed, the additional assurance
 underpinning the Class C item is eff ectively compromised.

The security challenge complete with safety implications can be
illustrated by reference to an imaginary production plant, with
many demands on its systems infrastructure. The industrial
pyramid in Figure 2 illustrates how hard real-time embedded
applications and other Operational Technologies (OT) are inte-
grated with IT in a typical production plant, bringing together
technologies that were traditionally isolated with those that
were traditionally connected.

Sensors provide operations owners the ability to collate data
such as location, position, speed, temperature, pressure, lock
status and vibration about all their assets, viewed via an HMI in
near real-time.

At a higher security level still, process plant settings or even
fi rmware can be updated remotely perhaps in response to
this data, or to changing production demands. And production
fi gures and profi tability provide security headaches of a diff er-
ent, commercial kind; sensitive information divorced from the
sensors’ engineering data.

Eff ective domain segregation in this scenario is essential. But so
is communication between those domains.

Fig ure 2: The industrial pyramid

11KDAB | Trusted Software Excellence

Communication paths between
segregated software items
There is usually a need for communication between software
components that make up a system, including those of diff erent
criticality. Those communication paths deserve particular atten-
tion both from a functional safety and a security perspective.

The exposure of high-risk software components to data from
components that have not been subjected to the same level of
rigour has the potential to compromise safety. Similarly, commu-
nications paths from less critical components can represent at-
tack vectors with the potential to compromise highly critical code.

Clearly the elements of the system considered most at risk by
this, or any other measure will depend on the system itself.
However, as a general rule, if domain separation or functional
decomposition are to deliver their promise of safe and secure
software, then it is essential that code handling any communi-
cation between domains or items of diff ering criticality must
be scrutinised to at least the level of the most critical software
component involved – and arguably to a higher standard than
the remainder of the code base.

“Communications
paths from
less critical
components can
represent attack
vectors with
the potential to
compromise highly
critical code”

Integrating OT and IT in plants enhances
data collection, remote updates, and
effi ciency. Ensuring secure, segregated
communication between components of
diff ering criticality is essential for safety.

12 13KDAB | Trusted Software Excellence

Functional safety standards
The roots of functional safety can be traced back to the late
1970s and the development of the DO178 guidance document
(known colloquially as a standard and referenced as that here)
for use in the civil aviation sector. Although it is generally known
as a formal process standard rather than a functional safety
standard, DO-178 does have functional safety at its core and
it was highly infl uential in the functional safety standards that
followed it.

DO-178 covers the complete software lifecycle – planning, de-
velopment and integral processes – to ensure correctness and
robustness in software systems for civil airborne applications.
The integral processes include software verifi cation, software
quality assurance, confi guration management assurance and
certifi cation liaison with the regulatory authorities. Increasing-
ly, standards developed for commercial applications including
the latest version of DO-178 (DO-178C [5]) have also become
recognised as best practice in the defence sector.

IEC 61508 and its derivatives
The challenges addressed by DO-178C are largely common
across the safety critical sectors, and the IEC 61508 standard
series, fi rst published in 1998, followed the example of DO-178.
It allows for the development of a uniform technical approach
that can be applied to all safety systems in electronics
and related software. Its generic nature made it appli-
cable across a wide range of sectors and it was soon
established as the basis for many sector-specifi c
derivatives. The ever-growing list of these so-called
”child standards” includes the EN 5012X series [6]
(railways), ISO 26262 [7] (automotive), IEC 62304 [8]
(medical devices) and many more (Figure 3).

12

Functional safety standards
The roots of functional safety can be traced back to the late
1970s and the development of the DO178 guidance document
(known colloquially as a standard and referenced as that here)
for use in the civil aviation sector. Although it is generally known
as a formal process standard rather than a functional safety
standard, DO-178 does have functional safety at its core and
it was highly infl uential in the functional safety standards that

DO-178 covers the complete software lifecycle – planning, de-
velopment and integral processes – to ensure correctness and
robustness in software systems for civil airborne applications.
The integral processes include software verifi cation, software
quality assurance, confi guration management assurance and
certifi cation liaison with the regulatory authorities. Increasing-
ly, standards developed for commercial applications including
the latest version of DO-178 (DO-178C [5]) have also become
recognised as best practice in the defence sector.

The challenges addressed by DO-178C are largely common
across the safety critical sectors, and the IEC 61508 standard
series, fi rst published in 1998, followed the example of DO-178.
It allows for the development of a uniform technical approach
that can be applied to all safety systems in electronics
and related software. Its generic nature made it appli-
cable across a wide range of sectors and it was soon

derivatives. The ever-growing list of these so-called
”child standards” includes the EN 5012X series [6]
(railways), ISO 26262 [7] (automotive), IEC 62304 [8]

“DO-178 does
have functional
safety at its core
and it was highly
infl uential in the
functional safety
standards that
followed it”

Functional safety standards originated with
the DO-178 in civil aviation in the 1970s.
DO-178 infl uenced later standards like
IEC 61508, applied across various safety-
critical sectors.

13KDAB | Trusted Software Excellence

Naturally there are many similarities between the child stan-
dards, but there are variations too as the derivatives refl ect not
only the guidelines established in IEC 61508, but also the existing
best practices in the sectors they address. For example, these
variations refl ect existing regulation (such as the FDA’s regulatory
classes [9] in IEC 62304) and the validity of a “proven in use” case

in high-volume industries (as exemplifi ed by ISO 26262).

13KDAB | Trusted Software Excellence

Naturally there are many similarities between the child stan-
dards, but there are variations too as the derivatives refl ect not
only the guidelines established in IEC 61508, but also the existing
best practices in the sectors they address. For example, these
variations refl ect existing regulation (such as the FDA’s regulatory
classes [9] in IEC 62304) and the validity of a “proven in use” case

in high-volume industries (as exemplifi ed by ISO 26262).

Figu re 3: IEC 61508 serves as the
basis for many sector-specifi c

functional safety standards

14 15KDAB | Trusted Software Excellence

Achieving functional safety
Functional safety standards require engineers to consider
diff erent failure categories. For example, ISO 26262 defi nes ran-
dom hardware failures “that occur unpredictably during the life-
time of a hardware element, and that follow a probability distribu-
tion”, whereas IEC 61508 defi nes systemic failure as “… related in
a deterministic way to a certain cause, which can only be eliminat-
ed by a modifi cation of the design or of the manufacturing process,
operational procedures, documentation or other relevant factors.”

The susceptibility of software to systemic failure is obvious.
Software is pure “thought-stuff ” by nature and there is no pos-
sibility of an apparently random failure in the same way that

Image 2: HMI interfaces in civil aviation are subject to the demands of DO-178C Photo by: ThisisEngineering

15KDAB | Trusted Software Excellence

there might be for a mechanical component demonstrating the
vagaries of a normally distributed life expectancy.

Preventative measures aim to minimize the probability of sys-
tematic failures during the development phase of a system. Any
poorly specifi ed, designed, or implemented aspect of a system
may lead to failure. The higher the quality of the development,
the less likely the failure.

Random hardware failures happen once the system is oper-
ating in the fi eld. Typical causes include issues related to tem-
perature, pressure, vibration, radiation, pollution, or ageing.
The nature of such failures can be permanent, intermittent, or
transient. Detective measures are designed into software to
detect failing or failed systems, and initiate responses to limit
damage and risk.

Policing compliance
DO-178C is the primary document by which the certifi cation
authorities such as the FAA [10] and EASA [11] approve all
 commercial software-based aerospace systems. These author-
ities require evidence of compliance for a product before they
will confi rm it to be airworthy.

However, not all functional safety standards are mandatory in
the sectors to which they apply. For example, compliance with
ISO 26262 is not obligatory although OEMs will often mandate
suppliers’ compliance by contractual means.

Developers of medical devices are not obliged to comply with
IEC 62304, but they are usually required to meet the approval
of authorities in the geographical area in which their products
will be used. For example, this makes the standard’s alignment
with the US FDA classifi cation signifi cant.

In all cases – whether mandated or not – compliance with stan-
dards acknowledged to represent best practice can only be a
good thing, especially if things go wrong and there is a need to
justify development practices later.

Image 2: HMI interfaces in civil aviation are subject to the demands of DO-178C Photo by: ThisisEngineering

16 17KDAB | Trusted Software Excellence

IEC 61508 Generic SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

ISO 26262 Automotive QM ASIL A ASIL B ASIL C ASIL D N/A

IEC 62304 Medical devices Class A Class B Class C

EN 5012X Railways SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

DO-178C Civil aerospace DAL E DAL D DAL C DAL B DAL A

Figure 4: An approximate mapping of SILs, ASILs, DALs and Classes

Proportionate safety measures
How safe is safe enough? Ideally, the most thorough safety
precautions would be applied by all software system develop-
ers, however unlikely potential harm might be. That is unlikely
to be commercially justifi able. A defi nition of “safe enough” is
required to allow precautions to be proportionate.

One approach is to use applied statistics in the form of Failure
Modes and Eff ects Analysis (FMEA), a step-by-step approach for
identifying all possible failures in a design, a manufacturing or
assembly process, or a product or service. In this context, fail-
ure modes are any potential or actual errors or defects that can
cause potential harm. Eff ects analysis consists of a systematic
study of the consequences of the failure modes.

A refi nement to that approach, FMECA, brings the criticality of
that failure into the calculation. FMEA and FMECA are relevant
to both functional safety and SOTIF.

All functional safety standards recognise that the extent to
which software systems are safety-critical varies. IEC 61508
defi nes the notion of a “SIL”, or Safety Integrity Level. A SIL is a
measure of safety system performance, in terms of probability
of failure on demand (PFD). There are four discrete integrity
levels associated with SIL: SIL 1, SIL 2, SIL 3, and SIL 4, with SIL 4
being the most demanding.

This principle of diff erentiating between levels of criticality is
common across the standards, although the naming conven-
tions for these levels and the mechanisms for their derivation
vary as illustrated in Figure 4.

17KDAB | Trusted Software Excellence

Calculating appropriate classification levels
considers problem likelihood and outcomes,
with ISO 26262 defining ASILs based on
severity, exposure, and controllability.

Calculating the appropriate level
Approaches to the calculation of the appropriate classification
varies between sectors and their standards, but in general each
takes into account the likelihood of a problem occurring and
the likely outcome should it do so.

Consider the automotive standard ISO 26262 as an example.
It defines ASILs ranging from QM, a quality management issue
with nominal safety critical impact and no additional require-
ments, up to D, which represents likely potential for severely
life-threatening or fatal injury in the event of a malfunction.
ASIL D requires the highest level of assurance that the depen-
dent safety goals are sufficient and have been achieved. These
levels are assigned based on a composite score of three factors:

Severity: a measure of the gravity, or seriousness, of potential
injury in the case of failure. Severity ranges from S1 (light and
moderate injuries) up to S3 (life-threatening and fatal injuries).

Exposure: a measure of the relative expected frequency of
exposure for each operational situation where a specific hazard
may occur. Exposure ratings range from E1 (very low probabili-
ty of exposure) to E4 (high probability of exposure).

Controllability: a measure of how easy or difficult it would be
for the driver, or other persons involved, to control the situa-
tion, and ranges from C1 (simply controllable by 99% of drivers)
to C3 (uncontrollable or difficult to control).

Figure 5 shows how these ratings are combined to derive an
appropriate ASIL. ‘QM’ implies that no additional measures
beyond normal corporate quality measures are required.

18 19KDAB | Trusted Software Excellence

Why does it matter?
Whatever the classifications – SILs, ASILs, Classes, or DALs – the
criticality levels assigned are important from a commercial per-
spective because there is significant overhead involved in the
achievement of the more demanding levels, compared to the
less critical ones.

For example, the railway specific EN 50129 [10] calls its classi-
fications SILs. The specified development process checks and
safety measures avoid an unreasonable residual risk propor-
tionate to the assigned SIL. SILs range from Basic Integrity (SIL
0) and then from 1 through to 4, where SIL 4 represents the
most hazardous and hence demanding level. The overhead
involved in producing a safety critical SIL 4 system (e.g., braking)
is significantly greater than that required to produce a system
with fewer safety implications (e.g., interior passenger lighting)
as illustrated by EN 50128 Table A.5 (Figure 6).

Severity class Probability class
Controllability class

C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

Figure 5: The ASIL derivation matrix

19KDAB | Trusted Software Excellence

International Electrotechnical Commission (IEC), “What we do,” 2022. [Online]. Available: https://www.iec.ch/what-we-do. [Accessed 11 November 2022].
International Electrotechnical Commission (IEC), “Safety and functional safety,” 2022. [Online]. Available: https://www.iec.ch/functional-safety. [Accessed 18th November 2022].
International Electrotechnical Commission (IEC), IEC 61508:2010 “Functional safety of electrical/electronic/programmable electronic safety-related systems” (all parts), IEC, 2010.
RTCC, DO-178C “Software Considerations in Airbourne Systems and Equipment Certification”, RTCA, 2011.
RTCC, DO-178C “Software Considerations in Airborne Systems and Equipment Certification”, RTCA, 2011.
European Committee for Electrotechnical Standardization (CENELEC), EN 50128 “Railway applications - Communication, signalling and processing systems - Software for railway
control and protection systems”, CENELEC, 2020.
International Organization for Standardization, ISO 26262:2018 “Road vehicles - Functional safety”, International Organization for Standardization, 2018.
International Electrotechnical Commission, IEC 62304:2006+AMD1 Medical device software - Software life cycle processes, IEC, 2015.
U S Food & Drug Administration, “Classify your medical device,” 2 July 2020. [Online]. Available: https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medi-
cal-device. [Accessed 30 December 2022].
European Committee for Electrotechnical Standardization, EN 50129 “Railway applications. Communication, signalling and processing systems. Safety related electronic systems for
signalling”, CENELEC, 2017.
RTCA, DO-178A “Software Considerations in Airborne Systems and Equipment Certification”, RTCA, 1985.
Federal Aviation Administation (FAA), “Federal Aviation Administation (FAA),” [Online]. Available: https://www.faa.gov/. [Accessed 3 November 2021].
European Union Aviation Safety Agency (EASA), “European Union Aviation Safety Agency (EASA),” 2021. [Online]. Available: https://www.easa.europa.eu/. [Accessed 3 November 2021].

ün LIU, üL. (2022). “A couple of people in a car” [photograph]. Unsplash. https://unsplash.com/photos/a-couple-of-people-in-a-car-jbiIhRsQ_-0
ThisisEngineering. (2020). “Pilot flying flight simulator” [photograph]. Unsplash. https://unsplash.com/photos/person-holding-black-and-red-hand-tool-_PdoBI2XhkY

Works Cited
[1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]
[9]

[10]

[11]
[12]
[13]

[1]
[2]

TECHNIQUE/MEASURE Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Formal Proof D.29 - R R HR HR

2. Static Analysis Table
A.19 - HR HR HR HR

3. Dynamic Analysis and Testing Table
A.13 - HR HR HR HR

4. Metrics D.37 - R R R R

5. Traceability D.58 R HR HR M M

6. Software Error Effect Analysis D.25 - R R HR HR

7. Test Coverage for code Table
A.21 - HR HR HR HR

8. Functional/ Black-box Testing Table
A.14 HR HR HR M M

9. Performance Testing Table
A.18 - HR HR HR HR

10. Interface Testing D.34 HR HR HR HR HR

Figure 6: EN 50128 Table A.5 illustrates increasing V&V overhead in proportion to criticality
R: Recommended

HR: Highly Recommended
M: Mandatory

Although the underlying software development process is the
same irrespective of criticality, simply comparing the require-
ments for SIL 4 compared to those for SIL 0 highlights the
point.

Throughout the development lifecycle across the safety critical
sectors, these classifications therefore have a tremendous im-
pact on the code development process from planning, develop-
ing, testing, and verification through to release and beyond. 

Images

About the KDAB Group
The KDAB Group is the world’s leading software consul-
tancy for architecture, development and design of Qt,
C++ and OpenGL applications across desktop, embedded
and mobile platforms. KDAB is the biggest independent
contributor to Qt and is the world’s fi rst ISO 9001 certifi ed
Qt consulting and development company. Our experts
build runtimes, mix native and web technologies, solve
hardware stack performance issues and porting problems
for hundreds of customers, many among the Fortune
500. KDAB’s tools and extensive experience in creating,
debugging, profi ling and porting complex applications
help developers worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide market
leading, hands-on, training for Qt, OpenGL and modern
C++ in multiple languages.

www.kdab.com

© 2024 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All
other trademarks belong to their respective owners.

