
Cybersecurity and HMI
What should you do?

2 3KDAB | Trusted Software Excellence

Background
Stories of cybersecurity issues appear in the news
almost constantly. Sophisticated and daring cyber-
attacks have grabbed the headlines and the atten-
tion of the public. Both Miller and Valasek’s famous
attack on a Chrysler Jeep as referenced in their
2015 paper “Remote Exploitation of an Unaltered
Passenger Vehicle” [1] and a separate, sophisticat-
ed attack on the Ukraine power grid [2] that same
year involved highly motivated, organized, qualified
and professional individuals with considerable
resources at their disposal. And as recently as
January 2023, T-Mobile discovered that a malicious
actor had gained access to their systems and stolen
personal information, like names, emails, and birth-
days, from over 37 million customers [3].

Images of subterfuge, highly qualified individu-
als in laboratories, and suspected internation-
al espionage are more reminiscent of a James
Bond movie than the average HMI interface to a
specialist niche of limited general interest. And

 surely, security challenges associated with IT sys-
tems like the T-Mobile example are interesting,
but irrelevant?

Because the HMI isn’t under attack, is it? The
back-end stuff is where the problems are, and
that’s someone else’s problem, isn’t it? It doesn’t
really matter to you what happens downstream.
Right?

Well, yes. And no.

Using this document
This document assumes no prior knowledge of cy-
bersecurity. If you are looking to learn how cybe r-
security impacts HMI design and implementation
and have the time to read it all – that’s great!

If not – stick to the black section, p. 3-7, for an
overview, or dip into the detailed color-coded sec-
tions as you please. Each offers a complete and
rounded introduction to its topic.

Cybersecurity buzzwords and phrases

Like most other specialist fields, the world of cybersecurity didn’t take long to adopt a whole set of
 terminology that can be an obstacle for the newcomer.

Useful terms to know in the context of this document include:
Attacker: a person or process attempting unauthorised access to restricted areas of a system in order to
perform a malicious act.
Attack surface: the sum total of vulnerabilities in a system or subsystem, or the end goal of one or more
attack vectors. For example, network drivers, user applications and file systems will each have an attack
surface.
Attack vector: an access route taken by an attacker to compromise a system. Embedded systems attack
vectors include external disk drives, LANs, the Internet, and Wi-Fi.
Bad actor (aka threat actor): an individual performing a malicious act.
Edge computing: a computing paradigm which refers to networks and devices at or near the user.
Endpoint: A physical device that connects to and exchanges information with a computer network.
Hacker: an individual who uses technical skills to exploit cybersecurity defences.

Black-hat hacker: criminal who breaks into computer systems or networks with malicious intent –
perhaps for financial gain, or just to create mischief.
White-hat hacker: ethical cybersecurity technician who openly exploits computer systems or net-
works to isolate their security flaws and to identify potential improvement.
Grey-hat hacker: cybersecurity expert who may well look for vulnerabilities in a system without the
owner’s permission or knowledge, but who will then report them to the owner. As the name suggests,
from an ethical perspective the activities of a grey-hat hacker sit somewhere between white- and black-
hat hackers.

Vulnerability: a weakness that a bad actor can exploit to perform unauthorized actions within a system.

3KDAB | Trusted Software Excellence

Cybersecurity and the HMI
Cybersecurity can be important for all sorts of reasons. It is
important to protect a patient’s medical records in a medical
device, for example. It is also important to protect account
details in a banking application, and PIN numbers in an ATM. In
safety-critical devices – cars, trains, aeroplanes, industrial plant
- there can be safety implications too.

Automotive systems present an obvious example of where
capacitive HMI systems are becoming an integral part of critical
functionality such that a malfunction could have implications for
driver, passengers, or other road users. Most cars released in
recent years have seen the functionality traditionally associated
with many physical buttons integrated into the touchscreen HMI,
lending a minimalistic and clean look to the interior as a whole.

The evolution of car control systems from a collection of dis-
parate, stand-alone control units to an integrated, connected
whole has brought many benefi ts. But white-hat hackers Miller
and Valasek provided a pertinent example of why it needs to
be approached with care. In their paper “Remote Exploitation of

Image 1: Functionality is being integrated into the touchscreen HMI
Photo by: ün LIU

4 5KDAB | Trusted Software Excellence

an Unaltered Passenger Vehicle”, they observed of a Jeep vehicle
that “…there are no CAN bus architectural restrictions, such as the
steering being on a physically separate bus. If we can send messag
es from the head unit, we should be able to send them to every ECU
on the CAN bus.”

The implication here is that it is important to restrict access to
safety critical domains from those that are more benign. The
paper references a “physically separate bus”, which in theory
would protect the safety critical element from outside inter-
ference. However, it is not possible to both isolate the domain
completely and still leverage the full potential of the connected
car because some communication between domains is always
going to be necessary.

For example, a touchscreen HMI may be innocuous in isolation,
but if it allows the driver to manipulate settings related to func-
tions such as lane change assist, intelligent cruise control, and
ABS, then clearly there is a need to communicate changes to
those settings.

In practice there are several ways to provide some degree of
separation between different domains and yet still provide a
level of communication between them. These include hardware
features such as ARM TrustZone [4], and software solutions
including hypervisors and RTOS.

Cybersecurity and “shifting left”
Most embedded applications have traditionally been isolated,
static, fixed-function, device-specific implementations. Estab-
lished practices and processes have relied on that status. But
recent years have seen a shift to a “cloud” connected world,
expected to be accessible to facilitate monitoring, upgrading,
enhancement, and supplementation. That has cybersecurity
implications for the whole system – including the HMI.

Traditionally, the practice for secure code verification has been
largely reactive. Code is developed by following somewhat
loose guidelines and then subjected to performance, penetra-
tion, load, and functional testing to find vulnerabilities, which
are fixed later.

“Recent years have
seen a shift to a
‘cloud’ connected
world, expected
to be accessible
to facilitate
monitoring,
upgrading,
enhancement, and
supplementation”

5KDAB | Trusted Software Excellence

A better, more proactive approach ensures code is secure by
design—a “shift left” along the timeline. That implies a system-
atic development process, where the code is written in accor-
dance with secure coding standards, is traceable to security
requirements, and is tested to demonstrate compliance with
those requirements as development progresses.

The resulting Secure Software Development Life Cycle (SSDLC)
involves integrating security testing and other activities into an
existing development process – for example, by writing security
requirements alongside functional requirements or by perform-
ing an architecture risk analysis as part of an established design
phase.

This proactive approach ensures that vulnerabilities are de-
signed out of the system or addressed in a timely and thorough
manner without disrupting existing development practice. For
example, Figure 1 shows a V-model SSDLC as described in the
automotive cybersecurity standard, ISO/SAE 21434. This model

Fi gure 1: Vmodel Secure Software
Development Life Cycle from the

automotive cybersecurity standard
ISO/SAE 21434

Fi gure 1: Vmodel Secure Software
Development Life Cycle from the

automotive cybersecurity standard
ISO/SAE 21434

6 7KDAB | Trusted Software Excellence

can be applied concurrently with its functional safety partner
document, ISO 26262.

The same principles can be applied to the DevOps lifecycle, re-
sulting in what has become known as DevSecOps. Although the
context differs between DevSecOps and the SSDLC, shift left

therefore implies the same thing for both—that is, an
early and ongoing consideration of security.

In the DevSecOps model, the DevOps life cycle
is superimposed with security-related activi-
ties throughout the continuous development

 process (Figure 2).

CERT secure coding practices
There are many sources of good advice on secure software
development, but perhaps the most definitive comes from
the CERT (Computer Emergency Readiness Team) Division of
the Software Engineering Institute (SEI) [5]. Created in 1988 as
the CERT Coordination Centre in response to the Morris worm
incident, the CERT division now has more than 150 cyber-
security professionals working on projects that take a proactive
 approach to securing systems.

The CERT division is a trusted, authoritative organisation dedi-
cated to improving the security and resilience of computer sys-
tems and networks. It partners with government, industry, law
enforcement, and academia to develop advanced methods and
technologies to counter large-scale, sophisticated cyber threats.

CERT have nominated a total of 12 key secure coding practices
– a “top ten”, more recently supplemented by two “bonus
practices”. Of course, like the “shift left” principle, these
recommendations are for software development in general
and are not specific to HMI development. Here we will interpret
those practices as they relate to the development of secure
HMI related code.

Grouping the CERT practices
As the previous two diagrams illustrate, whatever the preferred
development lifecycle there is always a need to specify require-
ments and architect the system, design it, and implement that

Figure 2: In the DevSecOps model,
the DevOps life cycle is super
imposed with securityrelated
activities throughout the continuous
 development process

Dev Ops
Plan

 Code

 Build

 Test

 Release

 Deploy

 Create

 Monitor

Sec

DevSecOps

7KDAB | Trusted Software Excellence

design. The “shift left” principle underlines the need to check
traceability at each step of that path to ensure correct imple-
mentation, and to test as early as possible.

Arguably, that traceability implies that all of the CERT practices
are relevant throughout the development lifecycle. Grouping
them in this way is necessarily subjective. However, the aim is
to detail each of the twelve best practices at the stage where it
fi rst makes an impact on the lifecycle of HMI development.

Requirements and architecture
A best-practice secure software system architecture will:

 / Implement defi ned security requirements and policies
which will include the adherence to the principle of least
privilege as part of a defence-in-depth strategy, where:

 / The principle of least privilege is that every process
within the system should execute with the least set of

Image 2: Shifting left implies designing in security from the very beginning Photo by: Amélie Mourichon

8 9KDAB | Trusted Software Excellence

privileges necessary to complete its job.
 / A defence-in-depth strategy involves the adoption of

multiple defensive strategies, so that if one layer of
defence turns out to be inadequate, another layer of
defence can minimize the extent to which a security
fl aw becomes an exploitable vulnerability.

If you would like to learn more about best-practice require-
ments defi nition and architecture of a secure HMI application,
read the blue section, p. 10-15.

System design
A best-practice secure software system design will:

 / Demonstrate traceability to show that requirements and ar-
chitecture have all been implemented – and nothing more.

 / Be simple. Unnecessary complexity implies software that
is diffi cult to understand, diffi cult to maintain, diffi cult
to test, and prone to error – and hence liable to contain
vulnerabilities.

 / Nominate or defi ne a secure coding standard. The right
coding standard will limit the number of vulnerabilities
that are inadvertently included in the code base.

 / Include for the validation and sanitization of data interfaces
to other systems. Outgoing and incoming data needs to be
“sanity checked” to ensure that it is always within expected
bounds, both in terms of values and in terms of use.

 / Base access decisions on permission rather than exclu-
sion (“default deny”). Such an approach is more challeng-
ing to implement but implicitly more secure.

If you would like to learn more about best-practice design of a
secure HMI application, read the green section, p. 16-20.

System development
Secure software system development best-practices include

 / Demonstrate traceability to show that the requirements,
design, and architecture have all been implemented – and
nothing more.

 / Apply eff ective quality assurance techniques. Select
the right approaches to demonstrate that security has
been “designed in”, as well as demonstrating that the
 completed system is secure.

9KDAB | Trusted Software Excellence

 / Understand the potential security threats, and model
them to demonstrate that they are accounted for.

 / Heed and attend to compiler warnings, which imply that
the code is not ideal. Code that is demonstrably less than
perfect at the outset will certainly present a larger attack
surface.

If you would like to learn more about best-practice development
of a secure HMI application, read the yellow section, p. 21-23.

Conclusions
There will almost certainly be more critical aspects of any
connected system than the HMI. However, that does not make
cybersecurity less important for the HMI developer. The HMI
is the interface to the outside world – an “endpoint” – and it
therefore has a key role to play in ensuring that more critical
domains are protected from bad actors.

Cybersecurity is a very broad subject indeed, and secure coding
is one small part of that. Within that context, CERT’s recom-
mended practices are also quite broad, language-independent
recommendations, some of which require interpretation in the
programming language of choice before they can be imple-
mented. Coding standards such as CERT C++ provide the most
obvious example of that.

The core principle underlying all of these practices is a recog-
nition that the cost to remove defects, including security fl aws,
can be hundreds of times higher after deployment. Solutions
for identifying and preventing security fl aws during develop-
ment are much more cost eff ective than in the test phase or
post-deployment.

Perhaps one issue they fail to highlight, however, is that argu-
ably the development lifecycle for a secure application can
never be closed. Any newly exposed vulnerability implies a new
requirement to address it, even on software that has been de-
ployed for years. For that reason, the ongoing maintenance of
the documentation and support infrastructure implied by many
of these suggested practices is an important consideration.

10 11KDAB | Trusted Software Excellence

Secure HMI requirements and
architecture
Defi ne security requirements
“Identify and document security requirements early in the develop
ment life cycle and make sure that subsequent development arte
facts are evaluated for compliance with those requirements. When
security requirements are not defi ned, the security of the resulting
system cannot be eff ectively evaluated.”

 CERT Bonus Secure Coding Practices

In order to architect and design for security policies, it is fi rst
necessary to establish what those policies are – and, by impli-
cation, the requirement to adhere to those policies. Security
requirements, like safety and functional requirements, need to
be specifi ed at the outset and need to be shown to have been
implemented.

Architect and design for security policies
“Create a software architecture and design your software to im
plement and enforce security policies. For example, if your system
requires diff erent privileges at diff erent times, consider dividing the
system into distinct intercommunicating subsystems, each with an
appropriate privilege set.”

 CERT Top Ten Practices

Security should not be regarded as a “bolt-on” feature. For an
HMI, that means establishing a set of security requirements
at the outset and ensuring that they are fully implemented at
the architecture and design stage. Ensure that “Least Privilege”
principles are followed within the structure of the HMI and the
system as a whole, dividing each into subsystems such that
each is only allowed the privileges necessary to perform the
task it is designed for.

It also applies within the HMI itself. The division of business
logic and user interface logic is considered good practice from
the perspective of language selection (perhaps C++ and QML,
respectively) [6] and the implied separation between those
 domains reinforces that best advice.

11KDAB | Trusted Software Excellence

Adhere to the principle of least privilege
(POLP)
“Every process should execute with the least set of privileges neces
sary to complete the job. Any elevated permission should be held
for a minimum time. This approach reduces the opportunities an
attacker has to execute arbitrary code with elevated privileges”

 CERT Top Ten Practices

The desirability of “Least Privilege” principles are emphasised
more explicitly in this CERT recommendation. It is one of their
recommended security policies. If processes are to be sep-
arated in this way, then the systems they belong to must be
modularised sufficiently for that separation to be effective and
 communications between the resulting modularised domains
must be tightly controlled.

These principles have long been promoted in academic circles.
As long ago as the early 1970s, Saltzer and Schroeder [7] estab-
lished a set of principles based on the idea of modularization,
noting that “Every program and every user of the … system should
operate using the least set of privileges necessary to complete the
job” – the Principle Of Least Privilege, or POLP.

A few years later, John Rushby [8] developed a similar line of
thinking in the shape of the MILS (Multiple Independent Levels
of Security/Safety) initiative. MILS is a high-assurance security
architecture, which by design provides:

 / separation and controlled information flow
 / separation mechanisms that support both untrusted and

trustworthy components
 / security mechanisms that are non-bypassable, evaluable,

always invoked, and tamperproof.

A MILS compliant connected system will therefore consists of
high-assurance components and applications which can be
independently developed, modularly combined, evaluated, and
certified to adhere to these principles [9].

Of course, developers responsible for the HMI will not always
have control or even input into the architecture of the sys-
tem as a whole. But adherence to these principles in so far as
they apply to the relationship between the UI and business

“As long ago
as the early
1970s, Saltzer
and Schroeder
established a set
of principles based
on the idea of
modularization”

12 13KDAB | Trusted Software Excellence

logic, and between the HMI and the remainder of the system,
 represents best practice.

Communication paths between
segregated software items
There is usually a need for communication between software
components that make up a system, including those of differ-
ent criticality. The interface between business logic and UI logic
is a good example of that. Communications paths from less crit-
ical components can represent attack vectors with the potential
to compromise highly critical code.

Clearly the elements of the system considered most at risk by
this, or any other measure will depend on the system itself.
However, as a general rule, if domain separation is to deliver its
promise of safe secure software, then it is essential that code
handling any communication between domains must be scru-
tinised to at least the level of the most critical software com-
ponent involved – and arguably to a higher standard than the
remainder of the code base.

This implies a responsibility to write HMI code in accordance
with best practice, particularly if the HMI is associated with a
connected, critical system.

Practice defence in depth
“Manage risk with multiple defensive strategies, so that if one layer
of defence turns out to be inadequate, another layer of defence can
prevent a security flaw from becoming an exploitable vulnerability
and/or limit the consequences of a successful exploit.

For example, combining secure programming techniques with
secure runtime environments should reduce the likelihood that
vulnerabilities remaining in the code at deployment time can be
exploited in the operational environment”.

 CERT Top Ten Practices

Defence in depth is another of CERTs recommended policies
and its principles should be implicit in the requirements and
architecture of the system.

Perhaps the most challenging aspect of developing software
with cybersecurity in mind is that the job can never be consid-

“Defence in
depth is another
of CERTs
recommended
policies and its
principles should
be implicit in the
requirements and
architecture of the
system”

13KDAB | Trusted Software Excellence

ered complete. A securely coded HMI in isolation is unlikely
to be a complete defence from cyberattack. But it can make a
sound contribution to the security of a system as a whole when
considered alongside other physical and software security
 measures.

These might include some or all of the following:
 / Tamper-resistant memory. [10]
 / Immutable memory technology. [11]
 / Protected key stores. [12]
 / Trusted execution environments (e.g., ARM TrustZone)
 / Secure boot to make sure that the “correct” image is

 loaded.
 / Domain separation to defend critical parts of the system.
 / MILS (Least Privilege) design principles to minimize vul-

nerability.
 / Minimization of attack surfaces.
 / Secure coding techniques.
 / Security focused testing.

Because no single defence of a connected system can
 guarantee impenetrability, the next best thing is to apply
 multiple levels of security so that if one level fails, others stand
guard. One popular analogy for this defence in depth approach
is that of a medieval castle [13] equipped to defend its inhab-
itants from siege through the use of towers, curtain walls,
moats, mounds, gates, drawbridges, and other defensive mech-
anisms [14].

A multiple level approach to cybersecurity also makes a great
deal of sense, so that if aggressors get past the first line of de-
fence, then there are others in waiting.

However, not all systems are similarly critical. So, should every
possible precaution be implemented on every occasion? And
if not, what should drive the decision as to what applies, and
when? To address that question, it is useful to focus on the
relationship between two key defensive strategies – Domain
Separation, and the HMI.

“A securely coded
HMI in isolation
is unlikely to be a
complete defence
from cyberattack”

14 15KDAB | Trusted Software Excellence

Identifying high risk areas
According to Peterson, Hope and Lavenhar [16], “Architectural risk
assessment is a risk management process that identifies flaws in a
software architecture and determines risks to business information
assets that result from those flaws. Through the process of architec
tural risk assessment, flaws are found that expose information assets
to risk, risks are prioritized based on their impact to the business,
mitigations for those risks are developed and implemented, and the
software is reassessed to determine the efficacy of the mitigations.”

Although enterprise computing is the primary focus of this
and similar studies, the underlying premise of identifying and
 focusing attention on the components of the system at most
risk makes sense, irrespective of the context.

Cyber risk (also known as cyber threat or security threat) is cal-
culated by considering identified security threats, its degree of
vulnerability, and the likelihood of exploitation such that:

Cyber risk = Threat x vulnerability x information value

Clearly the elements of the system considered most at risk by
this, or any other measure will depend on the system itself.
Examples of high-risk areas are likely to include:

 / Files from outside of the network.
 / Backwards compatible interfaces with other systems –

old protocols, sometimes old code and libraries, hard to
maintain and test multiple versions.

 / Custom APIs – protocols etc – likely to involve errors in
design and implementation.

 / Security code - anything to do with cryptography,
 authentication, authorization (access control) and session
 management.

Consider that principle in relation to a system deploying do-
main separation technology – in this case, a separation kernel
hypervisor (Figure 3).

It is easy to find examples of high-risk areas specific to this sce-
nario. For instance, consider the gateway virtual machine. How
secure are its encryption algorithms? How well does it validate
incoming data from the cloud? How well does it validate out-
going data to the different domains?

15KDAB | Trusted Software Excellence

Figur e 3: Deploying separation tech
nology to help optimize security.

In this context, the HMI is an example of a data endpoint. Is it
feasible to inject rogue data? How is the application code con-
fi gured to ensure that doesn’t happen?

Another potential vulnerability arises because many systems
need to communicate across domains. For example, suppose
that the HMI includes an interface to initiate central locking. It
belongs to a fairly benign domain, but in an emergency situation
after an accident, unlocking the doors becomes an imperative,
implying communication with a more critical domain. Any such
communications demand that their implementation is secure.

With these high-risk software components identifi ed, attention
can be focused on those parts of the HMI code associated with
them. The net result is a system where secure code does not
just provide an additional line of defence, but it actively con-
tributes to the eff ectiveness of the underlying architecture by
“reinforcing” its weak points.

Optimizing the security of this application code involves the
combined contributions of a number of factors, mirroring the
multi-faceted approach to the security of the system as a whole.

As for castles, it is not merely the number of lines of defence
that is it important. It is equally important to consider the ex-
tent to which each defence covers for the weaknesses in others.

16 17KDAB | Trusted Software Excellence

Secure HMI System design
All 12 of the CERT “best practices” and “bonus practices” have
an impact throughout the development lifecycle. However,
some of those practices are set in place during the design
phase, and they are discussed in this section.

Traceability is a consistent thread throughout all phases. In the
design phase, it is desirable to demonstrate that the design
implements the requirements and architecture – and nothing
more.

Keep it simple
“Keep the design as simple and small as possible. Complex designs
increase the likelihood that errors will be made in their implemen
tation, confi guration, and use. Additionally, the eff ort required to
achieve an appropriate level of assurance increases dramatically
as security mechanisms become more complex”

 CERT Top Ten Practices

Some developers will spend time writing effi cient code by
limiting the number of statements. Although there may be
situations where constraints make the application of optimiza-
tion methods unavoidable, in general the effi ciency of modern
compilers limits the benefi ts of doing so. It is usually far more
appropriate to make sure that the code is logically structured,
easy to understand, and easily tested.

In everyday language, the words “complex” and “complicated”
are largely interchangeable – so, if a system is complicated then
it is functionally complex. But in programming circles, software
complexity refers to something more specifi c; it is “the extent to
which a system is diffi cult to comprehend, modify and test, not to
the complexity of the task which the system is meant to perform.
Two systems equivalent in functionality can therefore diff er greatly
in their software complexity.” [17]

In consequence, if an application is inherently complicated
then it is especially important to ensure that the code is no
more complex than is required to perform the task at hand. By
defi nition, the more complex the code, the more diffi cult it is
to understand, test and maintain, and the more likely it is that
problems will arise.

“Keep the design
as simple and
small as possible.
Complex designs
increase the
likelihood that
errors will be
made [...]”

17KDAB | Trusted Software Excellence

For a “low complexity” requirement to be meaningful there has
to be a mechanism to quantify it. There are multiple metrics to
help do so. Some of the more well used metrics include:

 / Cyclomatic Complexity
 / Knots
 / Essential Cyclomatic Complexity
 / Essential Knots
 / Controlled Size
 / Single Entry/Exit Points for Procedures/Functions
 / Code Comments Ratio with Executable line
 / Unreachable Code
 / Data and Control Coupling

For example, cyclomatic complexity is of the more commonly
used and accessible metrics. Any meaningful source code will
have multiple linear independent paths. Decision constructs
such as if-else, while, and switch-case create branches and
hence more of these paths. The higher the number of paths,
the higher the cyclomatic complexity.

Clearly, some code is naturally more complex because it is per-
forming a complicated task. Best practice is to use metrics like
these as comparators to guard against any code being more
complex than it needs to be.

Adopt a secure coding standard
“Develop and/or apply a secure coding standard for your target
development language and platform”

 CERT Top Ten Practices

In any high-level language, there are hundreds of instructions
and constructs. Some of them are very easy to get wrong (es-
pecially in C and C++) and their incorrect use can lead to prob-
lems. Coding standards (also known as language subsets) were
introduced to disallow the use of those error-prone functions
and hence make the resulting code more likely to be error free.
In short, they help developers write better, more reliable code.
There are a number of potential sources of secure coding stan-

Quantify “low complexity” using metrics like
cyclomatic complexity and knots.

18 19KDAB | Trusted Software Excellence

dards, and every opportunity to tune them to the needs of a
particular development organization should be taken.

Given that the use of a secure coding standard is one of CERT’s
key guidelines, it is perhaps no surprise that the same orga-
nization has its own. CERT C++ is a coding standard designed
for the development of safe, reliable and secure systems that
adopts an “application centric” approach to the detection of
issues.

MISRA C++ off ers another option, despite a common miscon-
ception that its designers intended it only for safety-related, not
security-related, projects.

19KDAB | Trusted Software Excellence

Qt off ers its own coding conventions for QML. Although more a
style guide than a coding standard, a consistency of style across
a project and across a development team will inevitably lead
to enhanced maintainability, particularly between developers.
That will, in turn, lead to fewer mistakes and misunderstand-
ings and hence make the inadvertent addition of vulnerabilities
less likely.

Validate input
“Validate input from all untrusted data sources. Proper input val
idation can eliminate the vast majority of software vulnerabilities.
Be suspicious of most external data sources, including command
line arguments, network interfaces, environmental variables, and
user controlled fi les”

 CERT Top Ten Practices

Exposure to the malicious intent of bad actors is an unfortu-
nate consequence of connectivity across the sectors. Medical
devices, industrial plant, power supplies and a host of other
 applications are potentially vulnerable.

Staying with automotive applications as a relatable example,
Figure 4 suggests that there are many potential sources of
untrusted data in today’s connected car. This “validate inputs”
practice clearly applies to each of those data sources, but per-
haps less obviously it is also important to consider data from
other domains as untrusted – and that includes input data into
the HMI from elsewhere in the vehicle.

Sanitize data sent to other systems
“Sanitize all data passed to complex subsystems such as command
shells, relational databases, and commercial off -the-shelf (COTS)
components. Attackers may be able to invoke unused functionality
in these components through the use of SQL, command, or other
injection attacks.

This is not necessarily an input validation problem because the
complex subsystem being invoked does not understand the context
in which the call is made. Because the calling process understands
the context, it is responsible for sanitizing the data before invoking
the subsystem”

 CERT Top Ten Practices

Figu re 4: Automotive Attack Surfaces and
Untrusted Data SourcesUntrusted Data Sources

20 21KDAB | Trusted Software Excellence

Suppose that an HMI needs to communicate data to a highly
critical security domain – perhaps the ABS system in our ex-
ample car. Despite the disparity in criticality, the HMI software
may well have a much better understanding of what is accept-
able data in the context of the transmission. It is therefore
 important to deploy secure “sanity check” code to assess its
validity in the less critical domain.

Default deny
“Base access decisions on permission rather than exclusion. This
means that, by default, access is denied, and the protection scheme
identifies conditions under which access is permitted”

 CERT Top Ten Practices

Default allow is a type of protection scheme where rules
are defined to block particular actions. For example, content
 filtering rules will have a ‘’Deny” action for unwanted categories.
This is a type of policy where everything is allowed except for
certain actions.

A default allow policy is generally easy to manage but at the
same time, less secure because anything not specifically denied
will be allowed.

In contrast, a default deny scheme dictates that all actions are
to be blocked except those that have been explicitly allowed.
Such a policy is inherently more secure but requires more de-
veloper input.

This practice is aligned with the principle of least privilege,
and arguably a consequence of it. It is especially pertinent to
 inter-domain communications – and hence to communications
to and from the HMI, and between the UI and business logic.

Implement robust data sanitization
procedures to ensure secure communication
with complex subsystems, mitigating the
risk of injection attacks and safeguarding
system integrity.

“A default allow
policy is generally
easy to manage
but at the same
time, less secure
because anything
not specifically
denied will be
allowed.”

21KDAB | Trusted Software Excellence

Secure HMI system development
All 12 of the CERT “best practices” and “bonus practices” have
an impact throughout the development lifecycle. However,
some of those practices are set in place during the develop-
ment phase, and they are discussed in this section.

Traceability is a consistent thread throughout all phases. In
the development phase, it is desirable to demonstrate that the
implementation refl ects the requirements, architecture, and
 design – and nothing more.

Heed compiler warnings
“Compile code using the highest warning level available for your
compiler and eliminate warnings by modifying the code. Use static
and dynamic analysis tools to detect and eliminate additional
 security fl aws”

 CERT Top Ten Practices

Many developers using compiled languages have a tendency to
attend only to compiler errors during development and ignore
the warnings. CERT’s recommendation for compiled code is to
set the warnings at the highest level available and ensure that
all of them are attended to. SAST (Static Application/Analysis
Software Test) tools identify additional and more subtle con-
cerns than those exposed by compilers.

Use eff ective quality assurance
techniques
“Good quality assurance techniques can be eff ective in identifying
and eliminating vulnerabilities. Fuzz testing, penetration testing,
and source code audits should all be incorporated as part of an

Image 3: Person in front of a computer screen Photo by: rivage

22 23KDAB | Trusted Software Excellence

eff ective quality assurance program. Independent security reviews
can lead to more secure systems. External reviewers bring an
independent perspective; for example, in identifying and correcting
invalid assumptions”

 CERT Top Ten Practices

The traditional approach to testing cybersecurity-critical code
in the security market is largely reactive – so that the code is
developed in accordance with relatively loose guidelines, and
then it is tested by means of performance, penetration, load,
and functional testing to identify and deal with any vulnerabil-
ities. Although it is clearly preferable to ensure that the code
is secure “by design”, the tools used in the traditional reactive
model still have a place. Their role in this scenario is to con-
fi rm that the system is secure, rather than to fi nd out where it
is not.

There are two primary types of test tool used in the develop-
ment of a secure application:

Static Application Security Testing (SAST) tools help by ana-
lysing source code or compiled versions of code to help fi nd se-
curity fl aws, and check for adherence to coding standards. Such
tools can help to detect issues during software development.

Image 4: Apply eff ective quality assurance techniques during development to avoid introducing vulnerabilities.
Illustration by: Sjölund

23KDAB | Trusted Software Excellence

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[1]
[2]
[3]

[4]

Dynamic application security testing (DAST) tools analyse an
application while it’s running. “White box” DAST tools can relate
that execution to the source code. These include unit test tools,
and code coverage tools. “Black box” DAST tools have no infor-
mation relating to an application’s internal interactions or designs
at the system level, and no access or visibility into the source
program. Penetration and fuzz test tools fall into this category.

Model threats
“Use threat modelling to anticipate the threats to which the soft
ware will be subjected. Threat modelling involves identifying key
assets, decomposing the application, identifying and categorizing
the threats to each asset or component, rating the threats based
on a risk ranking, and then developing threat mitigation strategies
that are implemented in designs, code, and test cases”

 CERT Bonus Secure Coding Practices

High risk areas at the critical edge include data endpoints
exemplified by the HMI. Communication between domains,
particularly those of differing levels of criticality, should also be
focal points throughout the development process. Addressing
those focal points throughout the development lifecycle is key
to optimizing the security of the system as a whole.

Chris Valasek & Charlie Miller, “Remote Exploitation of an Unaltered Passenger Vehicle,” 2015. [Online]. Available: https://ioactive.com/pdfs/IOActive_Remote_Car_Hacking.pdf.
[Accessed 11th February 2023].
K. Zetter, “Wired: “Inside the Cunning, Unprecedented Hack of Ukraine’s Power Grid”,” 3rd March 2016. [Online]. Available: https://www.wired.com/2016/03/inside-cunning-unprece-
dented-hack-ukraines-power-grid/. [Accessed 11th February 2023].
“Electric: High-Profile Company Data Breaches 2023,” 3rd February 2023. [Online]. Available: https://www.electric.ai/blog/recent-big-company-data-breaches#:~:text=T%2DMo-
bile%3A%20January%202023,from%20over%2037%20million%20customers.. [Accessed 11th February 2023].
Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho and Sarah Martin, “TrustZone Explained: Architectural Features and Use Cases,” in 2016 IEEE 2nd International Confer-
ence on Collaboration and Internet Computing, Pittsburgh, PA, USA, 2016.
Carnegie Mellon University, “Carnegie Mellon University - Software Engineering Institute - The CERT Division,” Carnegie Mellon University, 2022. [Online]. Available: https://www.sei.
cmu.edu/about/divisions/cert/index.cfm. [Accessed 13 April 2022].
Seirdzio, “QT Forum: Best practice when decoupling logic and user interface,” QT, 18th December 2018. [Online]. Available: https://forum.qt.io/topic/97767/best-practice-when-de-
coupling-logic-and-user-interface. [Accessed 5th May 2023].
Saltzer, J.H. and Schroeder, M.D., “The Protection of Information in Operating Systems,” Proceedings of the IEEE , vol. 9, no. 63, pp. 1278-1308, 1975.
J. Rushby, “Design and Verification of Secure Systems,” in 8th ACM Symposium on Operating System Principles, Pacific Grove, California, 1981.
M. Pitchford, “Applying MILS principles to design connected embedded devices supporting the cloud, multi-tenancy and App Stores,” in 8th European Congress on Embedded Real
Time Software and Systems (ERTS 2016), TOULOUSE, France, 2016.
D. Serpanos and D. Stachoulis,, “Secure Memory for Embedded Tamper-proof Systems,” in 14th International Conference on Design & Technology of Integrated Systems In Nanoscale
Era (DTIS), Mykonos, Greece, 2019.
Helixstorm, “Immutable storage: What it is and why your business needs it,” [Online]. Available: https://www.helixstorm.com/blog/what-is-immutable-storage-and-why-your-busi-
ness-needs-it/. [Accessed 12th February 2023].
Townsend Security, “The definitive guide to encryption key management fundamentals,” [Online]. Available: https://info.townsendsecurity.com/definitive-guide-to-encryp-
tion-key-management-fundamentals. [Accessed 12th February 2023].
Historic European Castles, “Medieval Castle Defence – Defending a Castle from Siege,” 19 November 2020. [Online]. Available: https://historiceuropeancastles.com/medieval-cas-
tle-defence-defending-a-castle-from-siege/. [Accessed 15 September 2021].
M. Pitchford, “Defense in depth: What does it mean, and what can it achieve?,” 12th October 2021. [Online]. Available: https://www.microcontrollertips.com/defense-in-depth-what-
does-it-mean-and-what-can-it-achieve/. [Accessed 12th February 2023].
Welsh Government, “Cadw: Beaumaris castle,” Crown copyright, 2023. [Online]. Available: https://cadw.gov.wales/visit/places-to-visit/beaumaris-castle. [Accessed 25th February
2023].
Peterson, Hope and Lavenhar, “Architectural risk analysis,” CISA, 2005. [Online]. Available: https://cisa.gov/bsi/articles/best-practices/architectural-risk-analysis/architectural-risk-anal-
ysis. [Accessed 25th February 2023].
Rajiv D. Banker, Srikant M. Datarand, and Dani Zweig., “Software Complexity and Maintainability,” University of Minnesota and Carnegie Mellon University, 1998.

ün LIU, üL. (2022). “A couple of people in a car” [photograph]. Unsplash. https://unsplash.com/photos/a-couple-of-people-in-a-car-jbiIhRsQ_-0
Amélie Mourichon, AM. (2019). “Person writing on paper” [photograph]. Unsplash. hhttps://unsplash.com/photos/person-writing-on-printing-paper-wusOJ-2uY6w
Rivage, Sigmund. (2019). “A close up of a persons face in front of a computer screen” [photograph]. Unsplash. https://unsplash.com/photos/a-close-up-of-a-persons-face-in-front-of-
a-computer-screen-2qd9noyeuRE
Sjölund, Philip. (2024). “Data breach“ [illustration].

Works Cited

Images

About the KDAB Group
The KDAB Group is the world’s leading software consul-
tancy for architecture, development and design of Qt,
C++ and OpenGL applications across desktop, embedded
and mobile platforms. KDAB is the biggest independent
contributor to Qt and is the world’s fi rst ISO 9001 certifi ed
Qt consulting and development company. Our experts
build runtimes, mix native and web technologies, solve
hardware stack performance issues and porting problems
for hundreds of customers, many among the Fortune
500. KDAB’s tools and extensive experience in creating,
debugging, profi ling and porting complex applications
help developers worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide market
leading, hands-on, training for Qt, OpenGL and modern
C++ in multiple languages.

www.kdab.com

© 2024 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All
other trademarks belong to their respective owners.

