
Integrating Qt Quick and 3D renderers

James Turner
james@kdab.com

Thursday, 17 October 13

mailto:james@kdab.com
mailto:james@kdab.com

Overview

• Qt Quick 2 rendering model

• Different scene rendering models

• Qt in control

• Qt not in control

• Power-sharing

Thursday, 17 October 13

Qt Quick 2

• QML builds a tree of QQuickItems

• scenegraph layer builds parallel tree of
QSGNodes

• Created via
QQuickItem::updatePaintNode

• Threading synchronization boundary

Thursday, 17 October 13

scene-graph features

• Transforms

• Materials (shader programs)

• Geometry with textures

• Clipping / masking

• Custom nodes

• with some limitations

Thursday, 17 October 13

rendering model

• In non-threaded OpenGL, simple

• QQuickWindow requests OpenGL
support

• Context with stencil support

• Update paint nodes from QQuickItem
state

• Traverse paint node hierarchy, build
batches, submit

Thursday, 17 October 13

Threaded rendering

• Render thread does all OpenGL calls

• Never waits on main (GUI) thread

• GUI thread sends custom events to
request a sync

• State synchronization is fast

• No OpenGL calls

• Rendering code is otherwise unchanged

Thursday, 17 October 13

Basic integration

• QQuickWindow provides
beforeRendering and
afterRendering hooks

• Use these to make arbitrary OpenGL calls
before or after the QSGNode tree is
rendered

• Rendering occurs as scheduled by
QQuickWindow

• Context is from QQuickWindow

Thursday, 17 October 13

Integration issues

• clear before rendering

• Persistent OpenGL content

• Qt::DirectConnection

• Restore OpenGL state

• OpenGL profile & version

Thursday, 17 October 13

Well, that was easy, wasn’t it?

Beer, anyone?

Thursday, 17 October 13

Issues

• Custom OpenGL in a QQ2 item, how?

• What if you can’t control context creation?

• What if you can’t control threading?

• What if you can’t control drawing?

Thursday, 17 October 13

Layering

• Do you actually need to integrate the
renderers?

• Instead

• Overlays

• Child windows

• Highly dependent on hardware and driver
nuances

Thursday, 17 October 13

Adopt-a-context

• QOpenGLContext is a nice platform
abstraction around NSGLContext,
WGLContext, GLXContext,
EGLContext

• Unfortunately some crazy people don’t
use Qt

• They write their own abstraction

• On $platform, how to go from
$fooContext to QOpenGLContext?

Thursday, 17 October 13

Platform abstractions

• Most renderers have an abstraction layer

• GraphicsWindow, RenderWindow

• Target native API / Qt / GLUT

• Abstraction layer covers event-delivery in
addition to rendering

• resizing, closing, mouse & keyboard

• Simplistic compared to Qt

Thursday, 17 October 13

VTK

• Provides a QGLWidget based window

• And a Qt5 native variant is doable

• Provides a top-level
vtkRenderer::render() method

• Compatible with beforeRendering signal

• Straightforward because VTK is not
threaded for rendering

Thursday, 17 October 13

VTK integration

• Run VTK rendering under QML

• Ensure VTK only touches OpenGL state
when QQ2 renderer permits it

• from the correct thread

• Forward events to VTK

Thursday, 17 October 13

OpenSceneGraph

• Phased rendering

• Update

• Cull

• Draw

• Configurable threading modes

• SingleThreaded, DrawThreadPerContext,

• CullThreadCameraThreadPerContext

Thursday, 17 October 13

OSG continued

• Ideally overlapping each of these traversals
of the scene hierarchy

• Internally, OSG is building batches
(RenderBins) and other transformation
before ultimately calling GL commands

• Render and cull threads, if they exist, are
largely hidden from the public API

• All of this strongly parallels QQ2

Thursday, 17 October 13

Let’s Battle!

• Only one engine can be in charge of
rendering

• This is a lie, see later

• Engines hide internal threading

• Engines need to share an OpenGL context

• But not trample each other’s state

Thursday, 17 October 13

QQ2 in control

• For libraries which provide a well-defined
render entry-point, put QQ2 in charge

• Providing its timing guarantees work

• Other rendering code must be thread-
safe

• Qt 5.2 adds helper to restore OpenGL
state after calling into other code

Thursday, 17 October 13

Privates

I found these interesting private APIs!

Thursday, 17 October 13

Interleaving

• I want my custom OpenGL rendering in an
arbitrary scene location via a custom
QQuickItem

• I shall use QSGRenderNode, override
render(), and call my code.

• This OpenGL stuff is easy!

Thursday, 17 October 13

Gunnar’s sad face

• Qt 5.2 features a revised scene-graph
renderer

• Combines and re-orders all geometry into
large batches

• Up to 100 times faster

• Will not tolerate arbitrary OpenGL calls
from custom QSGNodes

• Only compose existing node types

Thursday, 17 October 13

Putting QQ2 in a box

• QQ2 contains a (private) plugin API

• We can supply our own renderer,
subclassing QSGRenderer

• render() method called when QQuick
schedules it

• But who cares about that?!

• External renderer can be in control

• Control context creation

Thursday, 17 October 13

Custom renderer

• We can make our render() method do
whatever we chose, or nothing

• Assuming some entry-point from another
renderer, we can use that to setup and run
the QQ2 render pass

• Using the context supplied

• Complex approach

Thursday, 17 October 13

In OSG

• Use a Qt osg::GraphicsWindow

• Updated to use Qt5

• Custom osg::Drawable

• Peer class of our custom QSGRenderer

• Override drawImplementation()

• Run the QSG render code

Thursday, 17 October 13

I don’t want to share!

• Sometimes your render is irreconcilable
with QQ2

• But probably supports dynamic textures
and similar, as QQ2 itself does

• We can use multiple contexts to keep the
renderers apart

• Use FBOs and texture to move data
across

Thursday, 17 October 13

Into QQ2

•QOpenGLFrameBufferObject

• Render FBO contents at your leisure

• Potentially threaded, but beware

• Pass to QSGGeometry texture

• Helper for this in Qt 5.2

• Correct, robust approach for custom
rendered scene-graph nodes

Thursday, 17 October 13

From QQ2

• QQuickWindow::setRenderTarget

• to an FBO again

• careful about threading

• careful about context sharing

• Full decoupled approach, very appealing

Thursday, 17 October 13

Context-sharing

• QQ2 lacks entry point to pass a share
context

• We have to share from the QQ2 context

• Context-sharing has overhead in the driver

• Synchronisation of shared objects

• Blitting the data between unshared
contexts might be faster

• Or the only choice

Thursday, 17 October 13

Core compatibility

• Legacy renderers often use compatibility
profile

• QQ2 currently uses compatibility

• Soon have an option for core profile
mode

• Newer renderers might require, or heavily
benefit, from working in Core mode

• Use 3.x and 4.x features

• No Compatibility profile on Mac
Thursday, 17 October 13

Event-handling

• Easier if QQ2 is in control

• translate and forward events to your
renderer / window abstraction

• Inverse is possible - map from your
rendering library to Qt events

• Simplistic abstractions make this brittle

• Ideally arrange windows such that native
routing works

Thursday, 17 October 13

Conclusions

• Many combinations can be made to work

• Potential compromises on one or both
sides

• But often negligible in the real world

• Can impact whole-program architecture

• Check multi-threaded behaviour of your
OpenGL code - single thread making all
calls is always fastest

Thursday, 17 October 13

