
Qt	3D	Basics
Kévin	Ottens,	Software	Craftsman	at	KDAB



Qt	3D	Basics

Qt	3D	Basics p.2

Feature	Set

Entity	Component	System?	Kezaco?

Hello	Donut

Qt	3D	ECS	Explained

Input	Handling

Drawing	Basics

Beyond	the	Tip	of	the	Iceberg

The	Future	of	Qt	3D



Qt	3D	Basics

Feature	Set p.3

Feature	Set

Entity	Component	System?	Kezaco?

Hello	Donut

Qt	3D	ECS	Explained

Input	Handling

Drawing	Basics

Beyond	the	Tip	of	the	Iceberg

The	Future	of	Qt	3D



What	is	Qt	3D?

Feature	Set p.4

It	is	not	about	3D!

Multi-purpose,	not	just	a	game	engine

Soft	real-time	simulation	engine

Designed	to	be	scalable

Extensible	and	flexible



Simulation	Engine

Feature	Set p.5

The	core	is	not	inherently	about	3D

It	can	deal	with	several	domains	at	once
AI,	logic,	audio,	etc.
And	of	course	it	contains	a	3D	renderer	too!

All	you	need	for	a	complex	system	simulation
Mechanical	systems
Physics
...	and	also	games



Scalability

Feature	Set p.6

Frontend	/	backend	split
Frontend	is	lightweight	and	on	the	main	thread
Backend	executed	in	a	secondary	thread
Where	the	actual	simulation	runs

Non-blocking	frontend	/	backend	communication

Backend	maximizes	throughput	via	a	thread	pool



Extensibility	and	Flexibility

Feature	Set p.7

Domains	can	be	added	via	independent	aspects
...	only	if	there's	not	something	fitting	your	needs	already

Provide	both	C++	and	QML	APIs

Integrates	well	with	the	rest	of	Qt
Pulling	your	simulation	data	from	a	database	anyone?

Entity	Component	System	is	used	to	combine	behavior	in	your	own	objects
No	deep	inheritance	hierarchy



Qt	3D	Basics

Entity	Component	System?	Kezaco? p.8

Feature	Set

Entity	Component	System?	Kezaco?

Hello	Donut

Qt	3D	ECS	Explained

Input	Handling

Drawing	Basics

Beyond	the	Tip	of	the	Iceberg

The	Future	of	Qt	3D



ECS:	Definitions

Entity	Component	System?	Kezaco? p.9

ECS	is	an	architectural	pattern
Popular	in	game	engines
Favors	composition	over	inheritance

An	entity	is	a	general	purpose	object

An	entity	gets	its	behavior	by	combining	data

Data	comes	from	typed	components



Composition	vs	Inheritance

Entity	Component	System?	Kezaco? p.10

Let's	analyse	a	familiar	example:	Space	Invaders



Composition	vs	Inheritance	cont'd

Entity	Component	System?	Kezaco? p.11

Typical	inheritance	hierarchy



Composition	vs	Inheritance	cont'd

Entity	Component	System?	Kezaco? p.12

All	fine	until	customer	requires	new	feature:



Composition	vs	Inheritance	cont'd

Entity	Component	System?	Kezaco? p.13

Typical	solution:	Add	feature	to	base	class



Composition	vs	Inheritance	cont'd

Entity	Component	System?	Kezaco? p.14

Doesn't	scale:



Composition	vs	Inheritance	cont'd

Entity	Component	System?	Kezaco? p.15

What	about	multiple	inheritance?



Composition	vs	Inheritance	cont'd

Entity	Component	System?	Kezaco? p.16

What	about	mix-in	multiple	inheritance?



Composition	vs	Inheritance	cont'd

Entity	Component	System?	Kezaco? p.17

Does	it	scale?



Composition	vs	Inheritance	cont'd

Entity	Component	System?	Kezaco? p.18

Is	inheritance	flexible	enough?



Composition	vs	Inheritance	cont'd

Entity	Component	System?	Kezaco? p.19

Inheritance:
Relationships	baked	in	at	design	time.
Complex	inheritance	hierarchies:	deep,	wide,	multiple	inheritance
Features	tend	to	migrate	to	base	class

Entity	Component	System
Allows	changes	at	runtime
Avoids	inheritance	limitations
Has	additional	costs:
More	QObjects
Different	to	most	OOP	developer's	experience

We	don't	have	to	bake	in	assumptions	to	Qt	3D	that	we	can't	later
change	when	adding	features.



Qt	3D	Basics

Hello	Donut p.20

Feature	Set

Entity	Component	System?	Kezaco?

Hello	Donut

Qt	3D	ECS	Explained

Input	Handling

Drawing	Basics

Beyond	the	Tip	of	the	Iceberg

The	Future	of	Qt	3D



Hello	Donut	(QML)

Hello	Donut p.21

Good	practice	having	root
Entity	to	represent	the
scene

One	Entity	per	"object"	in
the	scene

Objects	given	behavior	by
attaching	component
subclasses

For	an	Entity	to	be	drawn	it
needs:
A	mesh	geometry
describing	its	shape
A	material	describing	its
surface	appearance

Demo	qt3d/ex-hellodonut-qml

qmlElement://Entity
qmlElement://Entity
qmlElement://Entity


C++	API	vs	QML	API

Hello	Donut p.22

QML	API	is	a	mirror	of	the	C++	API

C++	class	names	like	the	rest	of	Qt

QML	element	names	just	don't	have	the	Q	in	front
Qt3DCore::QNode	vs	Node
Qt3DCore::QEntity	vs	Entity
...

class://Qt3DCore::QNode
qmlElement://Node
class://Qt3DCore::QEntity
qmlElement://Entity


Qt	3D	Basics

Qt	3D	ECS	Explained p.23

Feature	Set

Entity	Component	System?	Kezaco?

Hello	Donut

Qt	3D	ECS	Explained

Input	Handling

Drawing	Basics

Beyond	the	Tip	of	the	Iceberg

The	Future	of	Qt	3D



Everything	is	a	QNode

Qt	3D	ECS	Explained p.24

Qt3DCore::QNode	is	the	base	type	for	everything
It	inherits	from	QObject	and	all	its	features
Internally	implements	the	frontend/backend	communication

Qt3DCore::QEntity

It	inherits	from	Qt3DCore::QNode
It	just	aggregates	Qt3DCore::QComponents

Qt3DCore::QComponent

It	inherits	from	Qt3DCore::QNode
Actual	data	is	provided	by	its	subclasses

Qt3DCore::QTransform
Qt3DRender::QMesh
Qt3DRender::QMaterial

...

class://Qt3DCore::QNode
class://QObject
class://Qt3DCore::QEntity
class://Qt3DCore::QNode
class://Qt3DCore::QComponent
class://Qt3DCore::QComponent
class://Qt3DCore::QNode
class://Qt3DCore::QTransform
class://Qt3DRender::QMesh
class://Qt3DRender::QMaterial


Everything	is	a	QNode	cont'd

Qt	3D	ECS	Explained p.25



You	Still	Need	a	System

Qt	3D	ECS	Explained p.26

The	simulation	is	executed	by	Qt3DCore::QAspectEngine

Qt3DCore::QAbstractAspect	subclass	instances	are	registered	on	the
engine
Behavior	comes	from	the	aspects	processing	component	data
Aspects	control	the	domains	manipulated	by	your	simulation

Qt	3D	provides
Qt3DRender::QRenderAspect
Qt3DInput::QInputAspect
Qt3DLogic::QLogicAspect

Note	that	aspects	have	no	API	of	their	own
It	is	all	provided	by	Qt3DCore::QComponent	subclasses

class://Qt3DCore::QAspectEngine
class://Qt3DCore::QAbstractAspect
class://Qt3DRender::QRenderAspect
class://Qt3DInput::QInputAspect
class://Qt3DLogic::QLogicAspect
class://Qt3DCore::QComponent


Qt	3D	Basics

Input	Handling p.27

Feature	Set

Entity	Component	System?	Kezaco?

Hello	Donut

Qt	3D	ECS	Explained

Input	Handling

Drawing	Basics

Beyond	the	Tip	of	the	Iceberg

The	Future	of	Qt	3D



Physical	Devices

Input	Handling p.28

To	handle	input	we	first	need	to	generate	input	events

Subclasses	of	Qt3DInput::QAbstractPhysicalDevice	represent	input
devices

Qt3DInput::QKeyboardDevice
Qt3DInput::QMouseDevice

Others	can	be	added	later

On	it's	own	a	device	doesn't	do	much
Input	handlers	expose	signals	emitted	in	response	to	events

class://Qt3DInput::QAbstractPhysicalDevice
class://Qt3DInput::QKeyboardDevice
class://Qt3DInput::QMouseDevice


Picking

Input	Handling p.29

High	level	picking	provided	by	Qt3DRender::QObjectPicker	component
Implicitly	associated	with	mouse	device
Uses	ray-cast	based	picking

Qt3DRender::QObjectPicker	emits	signals	for	you	to	handle:
pressed(),	released(),	clicked()

moved()	-	only	when	dragEnabled	is	true
entered(),	exited()	-	only	when	hoverEnabled	is	true

The	containsMouse	property	provides	a	more	declarative	alternative	to
entered(),	exited()

class://Qt3DRender::QObjectPicker
class://Qt3DRender::QObjectPicker


Physical	Devices	vs	Logical	Devices

Input	Handling p.30

Physical	devices	provide	only	discrete	events

Hard	to	use	them	to	control	a	value	over	time

Logical	device	provides	a	way	to:
Have	an	analog	view	on	a	physical	device
Aggregate	several	physical	devices	in	a	unified	device



Logical	Input	Action

Input	Handling p.31

Qt3DInput::QAction	provides	a	binary	value

It	is	activated	by	some	input,	can	be:
A	single	button	input	with	Qt3DInput::QActionInput
A	simultaneous	combination	of	button	inputs	with
Qt3DInput::QInputChord

A	sequence	of	button	inputs	with	Qt3DInput::QInputSequence

When	the	action	state	changes	the	active	property	is	toggled

Demo	qt3d/ex-logical-input-qml

class://Qt3DInput::QAction
class://Qt3DInput::QActionInput
class://Qt3DInput::QInputChord
class://Qt3DInput::QInputSequence


Logical	Input	Axis

Input	Handling p.32

Qt3DInput::QAxis	provides	an	analog	value	between	-1	and	1

It	varies	over	time	when	some	input	is	generated,	can	be:
When	a	physical	axis	varies	with	Qt3DInput::QAnalogAxisInput
While	a	button	is	pressed	with	Qt3DInput::QButtonAxisInput

When	the	axis	state	changes	the	value	property	changes

Demo	qt3d/ex-logical-axes-qml

class://Qt3DInput::QAxis
class://Qt3DInput::QAnalogAxisInput
class://Qt3DInput::QButtonAxisInput


Putting	it	All	Together:	Moving	Boxes

Input	Handling p.33

Focus	managed	using	tab

Focused	box	appears	bigger

The	arrows	move	the	box	on	the	plane

Page	up/down	rotate	the	box	on	its	Y	axis

Boxes	light	up	when	on	mouse	hover

Clicking	on	a	box	gives	it	the	focus

Boxes	can	be	moved	around	with	the	mouse

Demo	qt3d/sol-moving-boxes-qml-step3



Qt	3D	Basics

Drawing	Basics p.34

Feature	Set

Entity	Component	System?	Kezaco?

Hello	Donut

Qt	3D	ECS	Explained

Input	Handling

Drawing	Basics

Beyond	the	Tip	of	the	Iceberg

The	Future	of	Qt	3D



The	Scene	Graph

Drawing	Basics p.35

The	scene	graph	provides	the	spatial	representation	of	the	simulation
Qt3DCore::QEntity:	what	takes	part	in	the	simulation
Qt3DCore::QTransform:	where	it	is,	what	scale	it	is,	what	orientation	it
has

Hierarchical	transforms	are	controlled	by	the	parent/child	relationship
Similar	to	QWidget,	QQuickItem,	etc.

If	the	scene	is	rendered,	we	need	a	point	of	view	on	it
This	is	provided	by	Qt3DRender::QCamera

class://Qt3DCore::QEntity
class://Qt3DCore::QTransform
class://QWidget
class://QQuickItem
class://Qt3DRender::QCamera


Qt3DCore::QTransform

Drawing	Basics p.36

Inherits	from	Qt3DCore::QComponent

Represents	an	affine	transformation

Three	ways	of	using	it:
Through	properties:	scale3D,	rotation,	translation
Through	helper	functions:	rotateAround()
Through	the	matrix	property

Transformations	are	applied:
to	objects	in	Scale/Rotation/Translation	order
to	coordinate	systems	in	Translation/Rotation/Scale	order

Transformations	are	multiplied	along	the	parent/child	relationship

class://Qt3DCore::QComponent


Transforms	cont'd

Drawing	Basics p.37

1 import	Qt3D.Core	2.0
2
3 Entity	{
4    components:	[
5        Transform	{
6            scale3D:	Qt.vector3d(1,	2,	1.5)
7            translation:	Qt.vector3d(0,	0,	-1)
8        }
9    ]
10
11    Entity	{
12        components:	[
13            Transform	{	translation:	Qt.vector3d(0,	1,	0)	}
14        ]
15    }
16 }



Geometries

Drawing	Basics p.38

Qt3DRender::QRenderAspect	draws
Qt3DCore::QEntitys	with	a	shape

Qt3DRender::QGeometryRenderer's
geometry	property	specifies	the	shape

Qt	3D	provides	convenience
subclasses	of
Qt3DRender::QGeometryRenderer:

Qt3DExtras::QSphereMesh
Qt3DExtras::QCuboidMesh
Qt3DExtras::QPlaneMesh
Qt3DExtras::QTorusMesh
Qt3DExtras::QConeMesh
Qt3DExtras::QCylinderMesh

Qt	Demo	examples/qt3d/basicshapes-cpp

class://Qt3DRender::QRenderAspect
class://Qt3DCore::QEntity
class://Qt3DRender::QGeometryRenderer
class://Qt3DRender::QGeometryRenderer
class://Qt3DExtras::QSphereMesh
class://Qt3DExtras::QCuboidMesh
class://Qt3DExtras::QPlaneMesh
class://Qt3DExtras::QTorusMesh
class://Qt3DExtras::QConeMesh
class://Qt3DExtras::QCylinderMesh


Materials

Drawing	Basics p.39

If	a	Qt3DCore::QEntity	only	has	a
shape	it	will	appear	black

The	Qt3DRender::QMaterial
component	provides	a	surface
appearance

Qt	3D	provides	convenience	subclasses
of	Qt3DRender::QMaterial:

Qt3DExtras::QPhongMaterial
Qt3DExtras::QPhongAlphaMaterial
Qt3DExtras::QDiffuseMapMaterial
Qt3DExtras::QDiffuseSpecularMapMaterial
Qt3DExtras::QGoochMaterial

...

Demo	qt3d/sol-textured-scene

class://Qt3DCore::QEntity
class://Qt3DRender::QMaterial
class://Qt3DRender::QMaterial
class://Qt3DExtras::QPhongMaterial
class://Qt3DExtras::QPhongAlphaMaterial
class://Qt3DExtras::QDiffuseMapMaterial
class://Qt3DExtras::QDiffuseSpecularMapMaterial
class://Qt3DExtras::QGoochMaterial


Lights

Drawing	Basics p.40

Even	with	shapes	and	materials	we	would	see	nothing

We	need	some	lights
...	luckily	Qt	3D	sets	a	default	one	for	us	if	none	is	provided

In	general	we	want	some	control	of	the	scene	lighting

Qt	3D	provides	the	following	light	types:
DirectionalLight
PointLight
SpotLight

Lab	qt3d/ex-lights-qml

qmlElement://DirectionalLight
qmlElement://PointLight
qmlElement://SpotLight


Qt	3D	Basics

Beyond	the	Tip	of	the	Iceberg p.41

Feature	Set

Entity	Component	System?	Kezaco?

Hello	Donut

Qt	3D	ECS	Explained

Input	Handling

Drawing	Basics

Beyond	the	Tip	of	the	Iceberg

The	Future	of	Qt	3D



Making	your	Own	Geometries

Beyond	the	Tip	of	the	Iceberg p.42

Using	Qt3DRender::QBuffer	we	can	create	our	own	vertices

GeometryRenderer	controls	how	buffers	are	combined	and	parsed

Useful	to	make	you	own	geometries	programmatically:
From	a	function
From	data	sets
From	user	interaction

Demo	qt3d/ex-surface-function

class://Qt3DRender::QBuffer
qmlElement://GeometryRenderer


Texture	Composition	and	Filtering

Beyond	the	Tip	of	the	Iceberg p.43

Possible	to	sample	several	textures	in	a	single	material

Also	easy	to	reuse	stock	lighting	model

Then	you	can	blend	as	you	see	fit	in	the	shader

Demo	qt3d/sol-earth



Procedural	Textures

Beyond	the	Tip	of	the	Iceberg p.44

Lots	of	examples	available	on	the	Internet
https://www.shadertoy.com/

Usually	written	for	WebGL	or	OpenGL	ES	2
May	require	some	adaptation
Many	are	far	from	simple!

But	they	are	easy	to	plug	in	the	Material	system	and	to	parameterize

Demo	qt3d/ex-plasma

https://www.shadertoy.com/
qmlElement://Material


Integrating	with	QtQuick	using	Scene3D

Beyond	the	Tip	of	the	Iceberg p.45

Provided	by	the	QtQuick.Scene3D	module

Takes	an	Entity	as	child	which	will	be	your	whole	scene

Loaded	aspects	are	controlled	with	the	aspects	property

Hover	events	are	only	accepted	if	the	hoverEnabled	property	is	true

Demo	qt3d/ex-controls-overlay

qmlElement://QtQuick.Scene3D
qmlElement://Entity


And	more...

Beyond	the	Tip	of	the	Iceberg p.46

Layer	management

Own	materials	and	lighting	models

Texture	mipmaps

Cube	Maps

Portability	of	your	code	accross	several	OpenGL	versions

Complete	control	over	the	rendering	algorithm

Loading	complete	objects	or	scenes	from	files	(3ds,	collada,	qml...)

Post-processing	effects	(single	or	multi-pass)

Instanced	rendering

etc.

Demo	qt3d/ex-multiple-effects

Demo	qt3d/sol-asteroids



Qt	3D	Basics

The	Future	of	Qt	3D p.47

Feature	Set

Entity	Component	System?	Kezaco?

Hello	Donut

Qt	3D	ECS	Explained

Input	Handling

Drawing	Basics

Beyond	the	Tip	of	the	Iceberg

The	Future	of	Qt	3D



What	does	the	future	hold	for	Qt	3D?

The	Future	of	Qt	3D p.48

Qt	3D	Core
Efficiency	improvemments
Backend	threadpool	and	job	handling	improvements	-	jobs	spawning	jobs

Qt	3D	Render
Use	Qt	Quick	or	QPainter	to	render	into	a	texture
Embed	Qt	Quick	into	Qt	3D	including	input	handling
Level	of	Detail	(LOD)	support	for	meshes
Billboards	-	camera	facing	entities
Text	support	-	2D	and	3D
Additional	materials	such	as	Physics	Based	Rendering	(PBR)	materials
Particle	systems

Qt	3D	Input
Axis	inputs	that	apply	cumulative	axis	values	as	position,	velocity	or
acceleration
Additional	input	device	support
3D	mouse	controllers,	game	controllers

Enumerated	inputs	such	as	8-way	buttons,	hat	switches	or	dials



What	does	the	future	hold	for	Qt	3D?

The	Future	of	Qt	3D p.49

New	aspects:
Collision	Detection	Aspect
Allows	to	detect	when	entities	collide	or	enter/exit	volumes	in	space

Animation	Aspect
Keyframe	animation
Skeletal	animation
Morph	target	animation
Removes	animation	workload	from	main	thread

Physics	Aspect
Rigid	body	and	soft	body	physics	simulation

AI	Aspect,	3D	Positional	Audio	Aspect	...

Tooling:
Design	time	tooling	-	scene	editor
Build	time	tooling	-	asset	conditioners	for	meshes,	textures	etc.



Thank	you!

www.kdab.com

kevin.ottens@kdab.com


