
Ferro blabor mo quibus eium es exceri-
tate volorem quiatemque officia consed
qui nonet at faccull uptibus exerem
volut faccat.

1

Ferro blabor mo quibus eium es exceri-
tate volorem quiatemque officia consed
qui nonet at faccull uptibus exerem
volut faccat.

Modern Qt Development
The top 10 tools you should be using

Matthias Kalle Dalheimer | President and CEO

It takes time to learn a new tool – so
how do you know where to invest your
time? Here are our favourites.

KDAB — the Qt, OpenGL and C++ experts

Why is using the right tool for the job so important? Efficiency and
results are two reasons that immediately spring to mind. You don’t
see construction workers using shoes to drive in nails – so why as
software developers do we so often make do with manual solutions
to find bugs or optimize code? It’s certainly less efficient and much
more frustrating, and the final results can be less than ideal.

It always takes time to learn a new tool – so how do you know where
you should invest your time? We at KDAB would like to share our
favourite Qt development tools that we think are worth the effort.
We regularly rely on these tools to help us locate and fix troublesome
bugs and solve difficult optimization challenges. If you live at the
cutting edge of Qt development, you may be familiar with many of
these, but we know there’ll be something new for you regardless of
your level of expertise.

GammaRay
Introspection tool that adds Qt-awareness to the debugger

If you’ve been frustrated by debugging through endless Qt struc-
ture internals, you’ll definitely want to give this a try. GammaRay
understands most of the core Qt components from a Qt perspective
– QtQuick scene graphs, model/view structures, QTextDocuments,
signal/slot activations, focus handling, GPU textures, QWidgets, state
machines, and more – letting you observe and edit values at run-time
in a natural way. You can debug applications from launch or attach to
running apps (both local and remote).

KDAB page: GammaRay

KDAB blog: GammaRay release

2

GammaRay provides
Qt-aware debugging and live

value edits for significantly
better and faster debugging

of Qt apps.

https://www.kdab.com/development-resources/qt-tools/gammaray/
https://www.kdab.com/gammaray-version-2-11-1-released/

Clazy gives you compile-time warnings
for Qt best practices: it’s a great way to
improve your Qt code.

KDAB — the Qt, OpenGL and C++ experts

Clazy
Compiler plug-in that understands Qt semantics

This is something that needs to be part of every Qt developer’s bag
of tricks. By adding clazy to clang, you’ll get compile-time warnings
for Qt best practices – unneeded memory allocations, misused APIs,
or inefficient constructs. Clazy is a great way to improve your Qt code
and best of all, it can provide automatic refactoring fixes for some of
the errors it finds – no coding required!

KDAB video: Clazy

KDAB blog: Clazy visualizer

KDAB blog: Clazy release

Modern C++
Source code that uses C++11/14/17 improvements

Although C++11 and C++14 have been around for a while now, there
are many old coding habits that die hard. Many developers don’t take
advantage of newer C++ constructs that are more efficient, under-
standable, and maintainable. The thing is you don’t need to be a C++
standards expert to make small changes that can significantly help
your code. We’ve got a few of the more important highlights covered
in a paper below – or you can attend a training class or two for the
real low-down.

KDAB brochure: modernizing C++

3

You don’t need
to be a C++

standards expert
to make small

changes that
significantly

help.

https://www.kdab.com/clazy-video/
https://www.kdab.com/clazy-results-visualizer-qt/
https://www.kdab.com/clazy-1-5-released/
https://www.kdab.com/cpp-modernization-brochure/

Clang Tidy flags older C++ idioms that
could use updating, including some it
can refactor automatically.

KDAB — the Qt, OpenGL and C++ experts 4

HotSpot interprets and
visualizes Linux perf logs so

you don’t have to

Clang Tidy
Compiler tool to help modernize your C++

This is the lazy person’s way to modernize C++. Another clang-based
tool, Clang Tidy points out older C++ idioms that could use updating.
It flags where these should be replaced with new C++11 or C++14
improvements, and in many cases can do the refactoring automati-
cally. That’s productivity for you!

KDAB blog: clang tidy modernizing source

KDAB blog: clang tidy integrating build systems

HotSpot
Tool to visualize your app’s CPU performance

When it comes to optimizing, nothing beats a profiler – but reading
raw perf logs is a punishment that should only be reserved for people
who believe zip files are a proper form of source control. HotSpot
reads Linux perf logs and lets you see multiple different views (callers,
timeline, top-down, bottom-up) to help you easily understand where
you’re burning up your time.

 KDAB video: HotSpot

 KDAB blog: HotSpot

apitrace
Set of tools to debug your graphics APIs and improve their performance

If you’re writing an app with a GUI, profiling doesn’t stop at your
C++ code. You need a way to see the calls you’re making to OpenGL,
Direct3D, or DirectDraw, view the contents of those calls in a graphi-
cal interpretation, and profile their performance. That’s exactly what
apitrace does. It can also replay a trace file, allowing you to compare
and benchmark performance once you’ve seen where to make
improvements.

https://apitrace.github.io/

https://www.kdab.com/clang-tidy-part-1-modernize-source-code-using-c11c14/
https://www.kdab.com/clang-tidy-part-2-integrate-qmake-and-other-build-systems-using-bear/
https://www.kdab.com/hotspot-video/
https://www.kdab.com/hotspot-v1-1-0-adds-timeline-recording-features/
https://apitrace.github.io/

A system profiler is an incredibly
invaluable tool that can find problems
that nothing else will.

KDAB — the Qt, OpenGL and C++ experts 5

OS-level
debuggers are

specific to each
platform, but

multiple options
are usually

available.

Kernel/System Profiler
Tools for visualizing your operating system’s performance

Sometimes performance problems aren’t found in your app – they’re
in multiple-process interactions, hidden in driver stacks, or a result of
how you’re calling the operating system. For these kinds of really low-
level debugging, you’ve got to have a system-profiling tool. It can feel
like swatting a fly with a bazooka, but a system profiler is an incredi-
bly invaluable tool that can find problems that nothing else will.

Linux:

KDAB blog: slaying latency with linux kernel tracepoints

LTTng

TraceCompass

Intel VTune

CodeXL

Windows:

Intel VTune

CodeXL

QNX Neutrino RTOS:

QNX System Profiler

https://www.kdab.com/slaying-latency-with-linux-kernel-tracepoints/
http://lttng.org/
http://tracecompass.org/
https://software.intel.com/en-us/vtune
https://github.com/gpuopen-tools/codexl
https://software.intel.com/en-us/vtune
https://github.com/gpuopen-tools/codexl
http://www.qnx.com/developers/docs/6.4.1/ide_en/user_guide/sysprof.html

Heaptrack has several tools for finding
your app’s biggest memory hogs and
putting them on a diet.

KDAB — the Qt, OpenGL and C++ experts 6

A programmer’s IDE choice
can be contentious – other

popular choices besides
Qt Creator are Sublime Text

and Visual Studio Code.

Heaptrack
Tooling to watch your app’s memory usage

Sometimes optimization isn’t about speed – it’s about memory. If
you’re trying to profile your application’s memory usage, you’ll want
to check this out. By showing your application’s peak memory usage,
memory leaking functions, biggest allocators, and most temporary
allocations, you’ll be able to really narrow down where your app’s
memory is going and how to keep it on a diet.

KDAB Blog: Heaptrack release

Qt Creator
The Qt IDE

Perhaps you think it’s cheating to include Qt Creator in this list since
it’s already installed on every Qt developer’s desktop. Yes, but did
you know you can find slow spots in your Qt Quick code through
the built-in QML profiler? How about hitting Alt+Enter to get a list of
all the refactoring options at the cursor location? What about other
handy key sequences to find symbol references, do a git diff, or
record a macro, along with many other super helpful navigation and
editing aides? Shortcuts that you might use ten times a day if you only
knew they were there. Don’t be a slave to your mouse – print out our
handy reference card and pin it up on your cube wall.

Qt documentation: QML Performance Monitor

Qt documentation: refactoring

KDAB resource: Qt Creator reference card

https://www.kdab.com/heaptrack-v1-1-0-release/
http://doc.qt.io/qtcreator/creator-qml-performance-monitor.html
http://doc.qt.io/qtcreator/creator-editor-refactoring.html
https://www.kdab.com/development-resources/qtcreator/

A new entry on our tool list is C++
Best Practices, an invaluable resource
for C++ programmers.

KDAB — the Qt, OpenGL and C++ experts 7

The other tool
that can improve

your coding
is you!

Don’t forget to
regularly train

and update your
skills.

Extras

When we originally published this article, we included just our top
ten Qt developer tools. Others in the community have since pointed
out some great resources we were missing, and we’d be neglectful
if we didn’t mention just one more: C++ Best Practices. This is a
github page maintained by Jason Turner (lefticus) of the C++ Weekly
YouTube series and CppCast C++ podcast. It’s got a ton of great tool
suggestions and links, and while many of them are included here,
there are so many other good suggestions on this page that we had
to include it in our list.

C++ Best Practices

Summary

Those are our top ten (plus one) tools for improving your Qt devel-
opment tool chest. Don’t forget there are also things that can’t be
automated but for which there are courses and customized training
– such as effective code reviews or best coding practices.

https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md

Nearly every single one of these tools is
open source and free – there’s no reason
you can’t start employing them today.

KDAB — the Qt, OpenGL and C++ experts 8

KDAB offers many training
courses on development

best practice, tool deep
dives, profiling and

debugging, graphics, and
more.

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for archi-
tecture, development and design of Qt, C++ and OpenGL applications
across desktop, embedded and mobile platforms. KDAB is the biggest
independent contributor to Qt and is the world’s first ISO 9001 certi-
fied Qt consulting and development company. Our experts build run-
times, mix native and web technologies, solve hardware stack perfor-
mance issues and porting problems for hundreds of customers, many
among the Fortune 500. KDAB’s tools and extensive experience in
creating, debugging, profiling and porting complex applications help
developers worldwide to deliver successful projects. KDAB’s trainers,
all full-time developers, provide market leading, hands-on, training for
Qt, OpenGL and modern C++ in multiple languages.

www.kdab.com
© 2020 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks

belong to their respective owners.

http://www.kdab.com

