Packing Structs

Optimizing the memory layout of
C++ data structures

Volker Krause
vkrause@kde.org
@VolkerKrause



mailto:vkrause@kde.org

Memory Layout

Data members are laid out sequentially in
declaration order

Fach data member occupies sizeof (T) bytes
Fach data member is aligned to alignof (T)

Alignment of a composite type is the maximum
alignment of its data members

Data members of derived classes follow the base
class data members

Virtual inheritance is nasty




struct S {
bool ml;
int m2;
bool m3;

};




struct S {
bool ml; // size: 1, alignment: 1
// 3 bytes padding

int m2; // size: 4, alignment: 4
bool m3; // size: 1, alignment: 1
// 3 bytes padding

}; // size: 12, alignment: 4




struct S {
int m2; // size: 4, alignment: 4
bool ml; // size: 1, alignment: 1
1

bool m3; // size: 1, alignment: 1
// 2 bytes padding

}; // size: 8, alignment: 4




* GCC/-Wpadded

* OO Noisy
* dwarves/pahole
* fails on C++ code
* elf-dissector/elf-packcheck (kde:elf-dissector)

e fails on virtual inheritance

* sizeof/alignof and static_assert




Avoid Padding

Rule of thumb: order members by alignment

Keep alignment of base class in mind

e sizeof (QSharedData) ==
* When optimizing the memory layout, consider:

e 372bitvs. 64bit architectures

* compile-time conditionals




Tricky Cases

template <typename Key, typename T>
struct QHashNode {

ulnt hash;

Key key;

T value;

};

* Use enable_if to swap order for alignof (T) <=




Byte Layout

Reduces memory waste

ncreases cache utilization

Minimal impact on maintainability, apart from
tricky template cases.

Can we do more?




Information Theory

* How much “information” is actually in the data we
store?

* Example: bool
* holds 1 bit of information
* needs 8 bit storage
* Example: QODbject* on 64 bit architecture

* holds 61 bit of information (due to 8 byte alignment)
* needs 64 bit of storage




Bit Layout

SBit fields: struct{ uint a:31; bool b:1; }

Manual bit twiddling

std: :vector<bool>, QBitArray, QBitField, ...

enum class E : uint8 t { .. };

Incurs some extra CPU cost
Pointers/references don't work on a sub-byte level!

elf-packcheck can measure sub-byte utilization




Dirty Tricks

* Bypass alignment rules

 #pragma pack, _attribute_ ((__packed_))
* incurs performance penalty
* SIGBUS on non-x36
* Use the pointer alignment gap
* log2(alignof (T)) bits available
* Hard to maintain manually, breaks type-safety checks

e See QFlagPointer, QBiPointer




Bl == memory layout

CPU cost

MT cache conflicts
portability
maintainability

extensibility

emory layout can impact:

The Dark Side




Conclusiod

Avoid unnecessary padding

Think about what information content you need to
store

Consider tweaking the sub-byte layout for high-
volume classes

No replacement for allocating less instances where
possible




Questions?




References

 Slides: http://www.kdab.com/~volker/akademy/2015/

* Code: git.kde.org:elf-dissector.git



http://www.kdab.com/~volker/akademy/2015/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

